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ABSTRACT

Do climate conditions and extreme events fuel conflict and migration? This question has been widely studied using causal
designs that exploit natural variation in climate variables, often analyzed with linear fixed-effects models. Yet in this setting,
nonlinear relationships, distributional features of outcomes, and spatial heterogeneity can cause these models to violate core
assumptions and yield unreliable inferences. We propose a multilevel Bayesian framework that accommodates such features
while retaining identification strategies from natural experiments. We illustrate its potential with a representative analysis from
the literature of the effect of temperature anomalies on conflict in Somalia. When outcome distributions suited to event counts
are combined with partial pooling across regions, the apparent aggregate climate effect disappears and marked regional
heterogeneity emerges, with positive associations in only a few southern regions and negative or uncertain effects elsewhere.
Extending pooling across time further improves predictive ability. More broadly, the multilevel Bayesian framework offers a
general strategy for strengthening both explanatory and predictive inferences about climate and social outcomes, supporting
internal and external validity while efficiently accommodating heterogeneity even with small samples. This methodological
bridge between econometric identification strategies and statistical modeling provides a robust foundation for interdisciplinary
climate-conflict-migration research.
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Introduction

Do climate conditions, and notably climate extremes, fuel or lead to conflict and migration? This question has been addressed
by a rapidly growing number of empirical studies over the past two decades, with contributions from a variety of disciplines.
In parallel, a large number of systematic reviews have followed, assessing both the diversity of methods used to analyze the
statistical relationship between climate and social instability and whether a consensus emerges (see Supplementary Information
S.1 online for an overview of reviews published in the past dozen years). Taken together, these reviews find mixed evidence of
substantial climate impacts, largely reflecting the variability of specifications and data—such as how the onset of civil war is
defined, or which types of displacement are considered'®. The most recent literature reviews and meta-analyses continue to
highlight a lack of consensus® '°, underscoring the persistent methodological and empirical challenges in establishing robust
causal relationships. However, those studies within the new climate-economy literature'!, which uses reduced-form models
exploiting variation in climate variables to identify causal effects, tend to suggest a net effect of climate on conflict!>'4.
Research designs that leverage such natural or quasi-experiments are positioned to credibly identify causal effects. Here,
quasi-experiments refer to observational studies in which quasi-randomization of a variable occurs without researcher interven-
tion, approximating the exogeneity of a randomized experiment, though without full random assignment. Applying such designs
to the climate-migration-conflict nexus is of increasing relevance as climate conditions that were historically rare become
more frequent and as adaptation becomes a more salient concern. However, this nexus departs substantially from the statistical
setting that motivates the widespread linear reduced-form model, in at least two important ways. First, multiple features of
the data-generating processes in this context diverge, more strongly than in other contexts, from the assumptions of the linear
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model. As a result, the best linear approximation to the conditional expectation function—what the linear reduced-form model
provides—may not produce the desired information. Second, while causal inference and prediction can certainly be valuable
on their own, we argue that causality questions in this area are often ultimately motivated by prediction; the causal effects
of climate on conflict and migration are of increasing practical interest due to expected global changes in the distribution of
climate. In effect, causality studies often make implicit or explicit prediction statements, based on their estimates of slope
coefficients for climate regressors. Yet with many fixed effects and typically low explained variance, the uncertainty around
such predictive statements may be rather large. This motivates turning to approaches that evaluate predictive performance
explicitly, while accommodating and estimating heterogeneity in climate effects to support both explanation and prediction.
The climate-migration-conflict nexus thereby prompts the use of statistical approaches that integrate both causal identification
and predictive validity to provide meaningful insights. While traditional reduced-form linear models with fixed effects remain
the standard approach in the causal inference literature, their limitations in capturing nonlinear climate responses and spatial
heterogeneity efficiently limit explanatory power and policy relevance.

This paper proposes a multilevel Bayesian framework to analyze climate-fueled social instability. By explicitly modeling
heterogeneous regional effects and nonlinear responses while leveraging quasi-experimental identification strategies, this
framework offers a way of addressing the aforementioned limitations. We apply it to a dataset representative of the literature
and directly compare its results with that from a linear fixed-effects approach. The application illustrates how the latter approach
can not only obscure important heterogeneity in climate responses, but also mislead about the aggregate effect. In contrast, the
multilevel Bayesian framework improves both the internal validity of causal estimates and out-of-sample predictive ability. In
our application to the effect of temperature extremes on the number of conflict events in Somalia, we find that the apparent
aggregate climate effect disappears once an outcome distribution suited to event counts is specified and regional pooling is
introduced. Only a few southern regions drive positive estimates, whereas others show negative or highly uncertain effects.
Moreover, regional partial pooling and then further temporal pooling incrementally improve predictive ability.

The remainder of the paper proceeds as follows. We first describe how specific features of climate-conflict data violate
key assumptions of fixed-effects linear models, affecting both causal inference and predictive performance, and why these
complementary statistical goals should be jointly considered. Next, we introduce the general multilevel Bayesian framework
and describe a simple model for longitudinal data. We then illustrate its potential with the Somalia application and compare the
results to those from the fixed-effects linear model. We finally discuss the broader implications of our findings for environmental
social science research.

Assumptions and constraints of fixed-effects linear models

Research designs focused on quasi-experiments with adjustments for confounders commonly use a reduced-form linear model
to identify an average treatment effect. With longitudinal data, variation in climate variables is leveraged using a multivariate
linear regression model, which includes indicator variables or ‘fixed effects’ for the units—e.g., locations—in the sample, as
well as temporal fixed effects, to estimate the average effects of climate variables across units and periods. The multivariate
linear regression model with fixed effects (MLR-FE) has the following general form:

yie = Wi, B+ X6+ + v, +eir, el-,ifﬂnonnal(o,c); i=1,...,n, t=1,....T (D)

where y;; is the outcome variable for unit i at time ¢, W;, is a vector of climate variables considered as treatment (often linear,
sometimes including polynomials), Xj, is an optional vector of adjustment variables, ¢; is a vector of unit fixed effects, and y;
is an optional vector of temporal fixed effects. The vector of key parameters of interest f is estimated either by maximum
likelihood, with the explicit assumption of normally-distributed errors e, or by least squares—where the same assumption is
implicit for the typical tests of statistical significance. The motivation for using spatial and temporal fixed effects is to adjust for
time-invariant and space-invariant unobserved confounders, respectively.

Assuming a strong causal identification strategy, the estimators of the slope parameters are unbiased conditional on the
ability to adjust for all confounders. However, the validity, individual interpretation, and assessment of significance of the
estimates f3 still rely on the modeling assumptions of additivity, linearity, spherical errors, normally-distributed errors, and
non-collinear regressors'>. No assumption is ever expected to be met perfectly with real-world data, and exact compliance with
all these assumptions is not required for consistency. But in the climate-migration-conflict nexus in particular, the features of
the data-generating process often suggest particularly large departures from the assumptions of the MLR-FE model which can
become consequential for inference, and include:

* Nonlinear functional forms. Migration or conflict outcomes often have nonlinear relationships to environmental

conditions, with frequent threshold effects'®. In that context, the simple linear approximation to the conditional
expectation function, even if accurate in capturing an average relationship, would fail to capture nonlinearities and
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thereby severely limit, if not mislead, the information carried by the slope coefficients, and have weaker predictive ability
than a model that captures this behavior.

* Limited outcome data. In large samples, OLS estimators remain consistent under non-normal errors. But in this field,
outcome data are measures of migration or conflict whose ranges of possible values are often limited—e.g., as they take
the form of counts of rare events—producing strongly non-normal conditional distributions. Under such conditions,
and especially with relatively small sample sizes, the reliability of conventional significance tests is diminished. This
motivates outcome distributions better suited to the nature of the data, and systematic use of diagnostics. Short records
across a large number of spatial units also raise the risk of high-influence observations, given the presence of extremes of
the often right-skewed climate variables, or of the highly-skewed outcome variables.

L]

Correlated climate regressors. The regression on several climate variables—such as temperature, precipitation, and
indices derived from them—Iimits the simultaneous interpretation of coefficients as individual effects when these variables
are highly correlated. In such cases, only their joint effect can be interpreted reliably, while slope estimates risk instability.
The literature notes concerns about multicollinearity; some studies address it for example by computing pairwise
correlations among climate variables'” or by explicitly cautioning against interpreting coefficients simultaneously'®.

* Dependence structures and heterogeneous treatment effects. Socio-ecological data in the climate-migration-conflict
nexus often have a specific dependence structure—whether temporal, spatial or administrative®. Longitudinal data
have a hierarchical structure, where a lower level is the repeated measure within the group across time and is nested
within a higher level which represents the group-level data. So-called "sandwich" estimators, such as those proposed by
Conley (1999)!° and Newey-West (1987)%°, are a common way to adjust otherwise misleading estimates of parameter
uncertainty for spatial and temporal autocorrelation. However, such adjustment is only valid to the extent that the
dependence structure is correctly specified and the sample is sufficiently large. The MLR-FE model also typically fits a
separate intercept per group and a homogeneous treatment effect, thereby modeling independent baseline outcome levels
across groups, while assuming away similar group-level heterogeneity in the effect of the regressors. This no-pooling
of intercepts and full-pooling of slopes corresponds not to absent or conservative assumptions, but instead to specific
restrictive assumptions on the role of hierarchical structures in the data-generating process.

Predictive ability strengthens causal inference

Research questions on the statistical relationships between climate and social outcomes that go beyond merely describing
associations can often be classified as belonging to one of three categories:

1. Forward causal inference or "what if" questions, which seek to uncover the effects of causes?!, e. g., ‘What is the average
effect of heat waves on migration and conflict?’

2. Reverse causal inference or "why" questions, regarding causes of effects, e.g., ‘What are the causes of the increased rates
of interpersonal conflict observed in location X in the last few decades?’

3. Prediction, e.g., ‘How many annual international migrants from region A to region B are expected by mid-century under
a global average temperature increase of 2°C above pre-industrial levels?’

In the heterogeneous body of work concerned with capturing how changes in climate impact conflict and migration, the
distinction between these three proximate goals and the focus on different assumptions between disciplines partly explain the
variety of statistical approaches. In particular, the divide between explanatory and predictive goals has consequences at every
step of the modeling process, from data preparation to the choice of regressors and model selection, while some steps may even
virtually disappear, such as model evaluation in causal inference settings>>.

In the climate-economy literature, studies generally state the goal of forward causal inference. At the same time, the
motivation for prediction is often present—even if implicit—in estimating climate impacts. This is the case in causal inference
studies in general: Rubin (1974)>*—the seminal paper presenting the potential outcomes framework, on which typical causal
inference approaches are based—highlights how the results of a (true or quasi) experiment are generally of interest only to the
extent that the observed data are representative of a population of future treatment assignments, i.e., that the causal relationship
has a certain predictive ability. This is especially relevant in the case of climate impacts. The answer to "Do extreme climate
events lead to conflict or migration?" has become an increasing concern under the assumption that it tells us something about
"Will future climate changes bring more conflict or migration?".

This underlying motivation is revealed by many causal inference studies themselves, which include predictive statements or
pair the estimates from explanatory causal models with climate model output to form projections. In the latter case, Carleton et
al. (2016)'3 aptly describe the need to account for the multiple sources of uncertainty, namely (i) the statistical uncertainty from
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the fitted model, (ii) the variation in climate model predictions, and (iii) the potential adaptation of societies to climate change
that could alter the response function. We emphasize the concern that the original fitted model might have little predictive
power if it uses only climate regressors and fixed effects while imposing strong assumptions on unmodeled group-level effects.

In analyses concerned with estimating causally-interpretable parameters, considering the predictive ability of the model
would not only support the external validity of the analysis as well as an ultimate motivation of the research, but also bolster its
internal validity. This has been notably illustrated in the study of conflict?®. Prediction accuracy supports causal inference by
providing an additional check on its assumptions, namely: the statistical assumptions about the data-generating process, and the
aforementioned assumption of subjective random sampling of trials. Modeling assumptions about the data-generating process
can be supported in the pre-modeling phase by using prior theory to dictate the model, but also post-modeling, by testing the
model against reality, i.e., by assessing its predictive accuracy®. As social science knowledge can often be too limited for
deriving precise specifications, prediction provides a way to evaluate whether these assumptions hold in practice.

In summary, in the climate-migration-conflict nexus, the features of the data-generating process and the importance
of predictive interpretations motivate both a systematic examination of the fixed-effects linear model assumptions and the
exploration of more flexible approaches. In the next sections, we explore leveraging the same quasi-experimental variation
in climate through a framework that addresses these complementary statistical goals. We first introduce the implementation
of the multilevel Bayesian framework with such causal identification strategies. We describe how it accommodates various
conditional distributions of outcomes, models dependence in residuals and heterogeneous effects across spatial units, and
propagates uncertainty into projections under simulated climate conditions.

The multilevel Bayesian framework

This section introduces the multilevel Bayesian framework as a generalization of the fixed-effects model. We first restate the
fixed-effects specification, recasting it within this framework to highlight its underlying assumptions, and then show how a
multilevel structure with partial pooling relaxes them.

Longitudinal data have a hierarchical structure, where repeated measures at the lower level (time within group) are nested
within higher-level group data, for example, regions. Recast in a hierarchical (i.e., multilevel) modeling framework, the
MLR-FE model (1) fit to such data embeds restrictive assumptions about between-group variation: regional intercepts are
completely independent or unpooled, while climate variables have homogeneous or fully-pooled effects across regions. This
varying-intercepts fixed-slopes model is represented in equation (2), where the conditional distribution of the outcome variable
is generalized as % (i, 0) with mean u and other parameters 6, and we consider the example of a vector of two climate-related
predictors, such that 8 = (ot,7)" and W, = (Ay, By)':

y,'th(‘U,,‘[,e), y,-t:aAit+yB,~,+X§,5+¢,-+w,; i=1,....n; t=1,...,T. 2)

In this fixed-effects model, each regional intercept ¢; is estimated from the data of the given region i only, which is equivalent
to assuming that the intercepts belong to a joint distribution with an infinite variance. Homogeneous slope parameters, on the
other hand, implicitly represent the other extreme of zero variance between regions. It is often reasonable to assume instead
some degree of closeness between effects across regions, and hence use a compromise between full pooling and no pooling of
regional coefficients. In effect, one may assume that they belong to a common distribution and let the degree of pooling be
determined by the data. This is easily implemented with a multilevel model, where within-group variation is explicitly modeled
at the lower level, and between-group variation at the higher level. Modifying model (2) to allow for such partial pooling
of both slopes and intercepts across regions results in the two-level model (3), where the vector of region-level coefficients
is assumed to follow a joint multivariate normal (MVN) distribution. Group averages of the causal variables are added as
covariates to address concerns of bias from time-invariant confounders introduced by the modeled region-level effects. This
model is sometimes referred to as the "within-between random effects" model?® or the "correlated random effects” model?’. By
including the group averages as regressors, the problematic correlation between the treatment variables and the group effects is
removed from the group-level error term, resolving the concern of bias from group-level (here: time-invariant) confounders in a
manner similar to the fixed-effects model?®.

y,'tNy([.L,'t,G), [Ji,ZaiAi,+biBi,+X;t5+fi+n1fii+nzéi+l[/,; i=1,....n; t=1,....,T

a; (04)) Gaz Oup Oq f (3)
b;| ~ MVN Y || Oab Gl% Opr
fi %] |oas obr OF

In addition to relaxing the constraints on the distribution of regional coefficients, the multilevel structure allows them also to
be informed by group-level predictors. In this simplest form of the model, the serial or spatial dependence structure is not
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explicitly represented; however, it could be modeled by including relevant additional regressors—such as lags of the dependent
variable—alongside X;;.

This model can be estimated in a frequentist or Bayesian framework. We emphasize the Bayesian framework because
it provides full posterior distributions for group-level and population parameters, regularizes estimation in small samples,
and facilitates evaluation of predictive performance through posterior predictive checks. Specifically in the climate-conflict-
migration context, it simultaneously allows for: (i) accounting for the typically limited nature of migration and conflict outcome
data through an adequate choice of .#(), (ii) partially pooling the intercept and slope coefficients across groups efficiently,
and (iii) propagating uncertainty in parameter estimation. The posterior distributions produced can indeed be combined with
simulations from climate models to account for the uncertainty in estimation when projecting outcomes.

The same identification strategies based on quasi-experiments and adjustments for confounders can be leveraged within
this framework, which generalizes the typical linear model. Like any statistical approach, the multilevel Bayesian model also
rests on assumptions: the functional form of the model, the specification of the outcome distribution, and the priors assigned
to parameters all shape the resulting inferences. It is therefore essential to question these assumptions, and use tools such
as posterior predictive checks to assess their plausibility. This framework also implies tradeoffs. The most prominent are
higher computational costs and a potential reduction in the effective degrees of freedom for statistical tests. A further, though
presumably less consequential, tradeoff is that of one linear assumption for another. Indeed, with a non-identity link function,
the bias from time-invariant confounders is fully removed by including the group average of the causal variable as a covariate
only if the random effect is a linear function of this average. That being said, simulations suggest that the remaining bias
remains small in most situations?®, and additional functions of the group average can also be included to characterize more
flexible functional forms of the correlation. Although these tradeoffs exist, we propose that when model diagnostics show
strong departures from the assumptions of the typical linear model—such that ¢ tests of the coefficients of the best linear
approximation to the conditional expectation function do not provide the desired information—and when heterogeneity in
treatment effects or prediction are of interest, as is generally the case in the climate-economy literature, these tradeoffs may be
worthwhile.

Multilevel models have been used to study the relationship between climate and migration. For example, Nawrotzki
et al. (2015)*° use a two-level regression model to account for the hierarchical structure of their data (households nested
in municipalities). In a similar setting, Nawrotzki et al. (2013)%° consider a third level and include state-level predictors,
explicitly addressing the fact that “migration decisions are influenced by forces operating at different scales.” In both studies,
the central findings are the variation of the climate-migration association by location characteristics. However, only intercepts
are modeled as random effects; slopes are fully pooled across units. The estimated relationships are not causally interpretable
because they lack a strong identification strategy, and the predictive ability of the model is also not assessed. In the context
of conflict outcomes, Burke et al. (2015)'? use a hierarchical Bayesian model to conduct a meta-analysis of estimates from
the literature, themselves selected for their use of the MLR-FE framework. In the present paper, we suggest instead using the
multilevel Bayesian framework in combination with established identification strategies, to combine the focus on identification
with the consideration of modeling assumptions and account for heterogeneity by modeling slope parameters in addition to
intercepts. This framework can be adopted not solely in settings with hierarchical levels within the spatial dimension, but in any
longitudinal data.

In the next section, we apply this model to a dataset representative of the literature and compare the insights obtained with
those from the fixed-effects linear model.

Application: Temperature anomalies and civil war in Somalia

We consider the dataset on climate and conflict in Somalia used in Maystadt and Ecker (2014)31, hereafter M&E. This choice is
motivated by the availability and representativeness of these data: their analysis was conducted within the MLR-FE modeling
framework, and has been cited in a substantial number of literature reviews published since its original publication®*6-12-14.32

The hypothesis originally tested with this dataset is that temperature extremes are an indirect determinant of conflicts in
Somalia operating primarily through the channel of livestock prices. The dataset contains longitudinal, monthly data at the
scale of administrative regions, over the period 1997-2009. Supplementary Figure S4 online shows a map of these 18 regions.
The causal identification strategy uses the exogeneity of two main explanatory variables capturing the level and duration of
temperature extremes— ‘temperature anomaly’ TA and ‘drought length’ DL—and controls for ‘precipitation anomaly’ PA.
The outcome of interest is the number of violent conflict events. The main variables are listed in Table 1 along with the raw
data sources and transformation steps. The dataset also contains livestock prices, instrumented by the climate variables in a
two-stage least-squares fixed-effect model to explore the mechanism driving the reduced-form relationship. As that instrumental
variable specification adopts the same functional form and treatment of the error terms as the reduced-form—and our study
focuses on these modeling assumptions, not causal-identification assumptions—we present here only the reduced-form model.
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Inferences from the MLR-FE model and other single-level specifications
We first estimate the effects of the climate variables of interest using the MLR-FE model, presented in equation (4), where i
refers to the region, m the calendar month, y the year, and e;,,, represents the error term.

conﬂictimy = (XTAimy + ’}/DL,'my + SPAl'my + ¢i + Wiy + Qim + €imy,  €imy ~ normal(O, G);
i=1,...,18 m=1,...,12; y=1,...,13

“

Like M&E, we include 18 region fixed effects captured by ¢;, 156 month-year fixed effects ¥y, and 216 region-month fixed
effects w;,,. Temporal and spatial dependencies are accounted for simultaneously by estimating the variance-covariance matrix
of the error term following the methods of Newey and West (1987)?° and Conley (1999)!° with uniform weighting kernels.
Spatial dependency is assumed to disappear beyond a cutoff point of 263 kilometers, corresponding to the maximum distance
between the centroids of any pair of neighboring regions, and time dependency is allowed up to four months. The summary of
the results is presented in the first two columns of Table 2, and diagnostic plots of the residuals are presented in the first row of
Figure 1. Additional diagnostic plots are provided in detail in the Supplementary Information S.2 online.

The normal quantile-quantile diagnostic plot shows a strong departure from normality in the distribution of the residuals. A
Shapiro-Wilk test and a Kolmogorov-Smirnov test further confirm this departure. TA and DL have a correlation coefficient
of 0.28 when fixed effects are removed (see Supplementary Fig. S1 online). The computation of the correlations between
explanatory variables by region shows that PA and DL are highly correlated in the northern regions of Awdal, Nugaal, Sool, and
Togdheer. The share of the variation in outcomes within regions that is explained by the model, captured by the within R?, is
negligible when adjusted for the degrees of freedom. The correlations of climate variables, the non-normality of the residuals,
and the lack of information on the true correlation structure of the residuals, render the p-values of the regression coefficients
unreliable indicators for causal identification.

We therefore explore the robustness of the results to an alternative model specification better suited to the data-generating
process. We consider a negative binomial (NB) conditional distribution to account for the count nature of the outcome data, its
positive skew and the frequency of zero values:

conflictiyy, ~ NB(Uiny,®); i=1,...,18; m=1,...,12; y=1,...,13

&)
Himy = (XTAimy + YDLimy + 5PAimy + ;i + Yy

The second row of Figure 1 presents the diagnostic plots of this NB model (5), estimated as a generalized linear model with
logarithmic link function. As expected, we no longer observe a stark departure from the modeling assumptions; the Akaike
information criterion (AIC) is also substantially lower. With this distribution, we find that the key climate variables of interest
are not statistically significant (Table 2).

A multilevel Bayesian model of climate-fueled conflict

We now relax the assumptions of no-pooling of baseline effects and full pooling of climate effects across regions by generalizing
to the multilevel negative binomial model (6), which partially pools slopes and intercepts across regions, and we estimate it in
the Bayesian framework. Removing the region-month interaction term ;,, present in the single-level model specifications
gives comparable results and is more computationally efficient, so we omit it from the multilevel model for simplicity. All
parameters, including the hyperparameters of the between-group covariance matrix, are assigned weakly informative priors, i.e.,
prior distributions that mildly constrain parameters toward plausible values to regularize estimation without overwhelming the
information in the data (see the Supplementary Information S.4 online for details).

conflict;,,, ~ NB(Ujmy,®); i=1,...,18 m=1,...,12; y=1,...,13

imy
Himy = aiTAimy + biDLimy + CiPAimy +fi+mTA; + nZﬁi + n3mi + Yiny
2

a; (04)) [om Oup  Ouac Ouf (6)
2

bi| MyN | [P 7 Ow O szc Opf

Ci S| [Oa Obe O O

fi ¢o] [Our Oby O O

Figure 2 shows the posterior distributions of the central slope coefficients of the two negative binomial models—(¢o, ¥, 8) for
the single-level model (5) and (o, 0, &) for the multilevel model (6)—estimated using a Bayesian framework. For each
parameter of interest, Bayesian estimation produces a full posterior distribution, which represents the updated uncertainty about
the value of the parameter after observing the data. To compare this estimation to results from a frequentist approach, like
model (5) (which produces a single point estimate with an associated standard error and confidence intervals), we compute
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summary statistics of the posterior distribution, specifically the median as a measure of central tendency and 95% credible
intervals. As expected, the median values of the distributions from the fixed-slope Bayesian model are virtually identical to the
frequentist point estimates. However, in the partial pooling model, the distribution of the mean slope coefficient for DL shifts
towards zero, making the evidence of an effect of the climate variable is inconclusive.

The posterior distributions of the partially-pooled slope coefficients (a;,b;, c;) provide some insight into what drives these
higher-order effects. Figure 3 shows substantial heterogeneity in the effect of DL between regions, with only a few southern
regions (Banaadir, Bay, and Gedo) actually driving the positive causal relationship, while others experience negative effects,
which helps explain the relatively weak results in the full-pooling model. The Banaadir and Bay regions experienced the lowest
numbers of months without any conflict throughout the study period. The uncertainty around the parameters also shows large
differences between regions. In the northern regions of Awdal and Sool, the large uncertainty reflects the low total number of
conflicts over the study period (one and four, respectively).

Predictive ability. Considering the model’s predictive ability—whether for model evaluation or for simulation—is hindered
by the presence of temporal fixed effects. Indeed, what are the values of the coefficients on year-month indicator variables for
future periods? Similarly to pooling region intercepts in place of using region fixed effects, the assumption of unrelated effects
across months can be relaxed by pooling them, i.e., by modeling them as random effects. We can then form predictions for a
time period outside of the sample by sampling from their estimated distribution. We explore this in model (7), where we further
add predictors for the country-wide period effect w;. We include the group averages of the causal variables (taken over the
regions within each period) to address unbiasedness concerns, as well as a time-varying climate forcing C; experienced across all
regions, and model w; as a simple linear function of this predictor. Given a climate time series c;, such as a drought index—or in
our case the precipitation anomaly PA;—we construct the climate forcing predictor C; = Y ; ﬁ which emphasizes threshold

exceedance. Here Q,(.5) is the median of the climate time series. The general motivation for including group-level predictors
is that they may reduce unexplained group-level variation and thus yield more precise estimates than by shrinking all groups
equally toward the population mean. For this specific predictor, the motivation is two-fold: we may want to assess whether
conflict responds to a pervasive spatial impact or an aggregate climate anomaly aside from a regional climate anomaly, and we
would expect it to be related to tail behavior of the same sign across locations. We also consider an alternative definition of
the climate forcing that captures deviations from the average, with very similar results (see Supplementary Information S.3.2
online).
conflicty,, ~ NB(Uiny,®), i=1,...,18 m=1,...,12; y=1,...,13;

Mimy = aiTAimy + biDLimy + CiPAimy +fi+ nlﬁi +M2DL; + n3mi + Wiy
Wiy ~ normal(Wo + ¥i TA g + Y2 DLy + W3Cpy, Oy)

a; 0o 63 Oub  Ouac Oaf O
2

bi| MyN | |70 7 Ouw Op szc Opf

Ci 60 Ouc  Opc O; Ocf

fi %] lGuy Oby O O

Figure 4 shows a graphical comparison of relevant statistics of the observed data—namely, the proportion of zeros, due to
the count nature of the outcome—against replicated datasets from the fits of the different models considered. This comparison
of the posterior distributions shows that the original Gaussian model is not able to capture the count nature of the data. The
negative binomial models with no pooling or partial pooling across regions provide better fits, and the partial pooling of
temporal effects produces the best fit for the data. The higher performance of the multilevel models is also supported by
cross-validation. We estimate the expected log predictive density (ELPD) of each model using leave-one-out cross-validation,
then compute the differences between these ELPD estimates along with the standard errors of these differences. The results in
Table 3 show the same hierarchy in expected predictive accuracy as in the comparison of posterior predictive statistics. We
also replicate the partial-pooling model with the original Gaussian functional form, to assess how the predictive performance
changes when using a multilevel model, compared to the original specification (see Supplementary Information S.3.1 online).
We find, as captured by the ELPD, that the partial-pooling models perform marginally better than the no-pooling model;
however, they do not match the performance of the NB model which accounts for the count nature of the outcome data.

The application of hierarchical Bayesian models to this dataset illustrates how the standard MLR-FE model can be
readily recast in the hierarchical Bayesian framework, with a better suited conditional distribution for the response variable,
inferences on parameters generated using simulations—which enable the propagation of uncertainty if estimates are later used
in projections—and the partial pooling of regression coefficients, and can thereby allow one to analyze and model differences
across groups efficiently. The posterior distributions obtained can easily be combined with simulations similar to those proposed
in M&E, e.g., of increases in one standard deviation in the main climate variables, or of projected changes from global climate
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models under climate scenarios, to address what we can reasonably say about questions akin to “Will future climate changes
bring more conflict or migration?’ and with how much uncertainty.

Discussion

The hierarchical Bayesian approach to studying climate-fueled migration and conflict addresses several statistical principles of
particular concern in this interdisciplinary field. First, prediction and identification of causal effects are complementary pursuits.
Together, they support the modeling assumptions and thus the internal validity of the statistical analysis while strengthening
its external validity, which is generally of practical interest. Reporting both the model’s explanatory power and its predictive
power, and considering the latter for model selection, may strengthen inference from natural experiments®>. Second, the
linear approximation of the conditional expectation function of the outcome—which is the target of the linear reduced-form
model—may be misleading when the data-generating process departs substantially from the modeling assumptions. Separately
from the identifying assumptions supported by quasi-experimental variation and the ability to adjust for confounders, the
validity of inferences also rests on the underlying assumptions of the estimated model. An assessment of the key assumptions
such as the conditional distribution of the outcome, the absence of high influence observations, and the non-collinearity of
regressors is hence of particular interest and may be provided alongside the estimation results—see for example Cohen et
al. (2008)3. Third, the response to climate variables can vary across spatial units but with the ability to estimate spatial
sensitivity limited by the sample size. In such cases, a fully pooled model for the slope coefficients, as is typical in the MLR-FE
framework, represents a tradeoff between the efficiency gained by using a larger sample size (by pooling across all locations)
and the potential bias at each unit. Instead, generalizing to a partial pooling approach combines information across units,
shrinking uncertainty while reducing bias at individual spatial units. This multilevel structure provides a principled way to
assess whether variation in climate sensitivity across groups is meaningful and what observed attributes it may depend on.

The multilevel Bayesian framework, which is a generalization of the linear reduced-form model, brings the analysis closer to
addressing the three concerns above, thereby strengthening inference from quasi-experiments in the climate-migration-conflict
nexus. The benefits of such models and inference methods have been shown abundantly in the statistics literature and are relevant
in many settings using observational data to generate causal and predictive inferences. They come down to considering more
general statistical frameworks to learn from quasi-experimental data, and selecting models that approximate the data-generating
process; essentially applying the recommendation of "a combination of the economists’ focus on identification strategies and
the statisticians’ ability to build more complicated models to assess what might happen if the strict assumptions fall apart"3*.
This study emphasizes and illustrates how these benefits are particularly salient for studying the relationship between climate
and social instability. In this application, most of the contrast in estimated climate effects arises from adopting a negative
binomial outcome distribution, which better reflects the count nature of the conflict data. The Bayesian framework complements
this correction by enabling partial pooling and coherent assessment of uncertainty and predictive performance, extending the
analysis to capture heterogeneity and strengthen inference within a unified structure. Our findings suggest that a multilevel
Bayesian approach has the potential to support the internal validity, external validity, and efficiency of inferences, providing a
robust foundation for understanding the impacts of changes in climate on social outcomes of interest. This methodological
bridge between econometric identification strategies and complex statistical modeling capabilities addresses a critical need in
interdisciplinary climate impact research, where collaboration across disciplinary boundaries is essential.
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Figure 1. Residual plots of the reduced-form model assuming a conditional normal distribution (top)
or negative binomial distribution (bottom). Left: quantile-quantile plot of the residuals, including
Kolmogorov-Smirnov (KS) test for the goodness of fit of the residuals to the specified distribution.
Right: standardized residuals against model predictions; red stars represent outliers.
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Description Name Original resolution and processing steps

Source

Count of violent con-

. conflict region X month
flict events fi &

ACLED (2011)®

0.5° x 0.5° grid x month (average of daily maximum Ts)

ompearesmony 74 & emoed oo b g o
c. anomaly averaged over 3 months

Drought length DL count of consecutive months with positive TA values (Czl;(I)JS)%TS 31
0.5° x 0.5° grid x month (total precipitation P)

prcpisionsondy  pa & el ioncnenty g A

c. anomaly averaged over 3 months

Table 1. Main variables in M&E’s original reduced-form specification

Conditional Normal Normal NB NB

distribution (original* SEs)  (corrected SEs)

TA 0.71 0.71 0.01 0.08
(0.25) 0.37) 0.12) (0.11)

DL 0.08 0.08 0.02 0.02
(0.01) (0.04) (0.01) (0.01)

PA —-0.47 —0.47 —-0.08 —-0.07
(0.20) 0.31) (0.16) (0.15)

region FEs v v v v

year-month FEs v v v v

region-month FEs v v v

N 2,808 2,808 2,808 2,808

multiple R? 0.43

within® R? 0.17 0.17

adjusted within R? 0.04

AIC 16121 5837 5639

4The ‘original” standard errors (SEs) are those reported in M&E. They were computed using
a version of the ols_spatial_HAC function by Hsiang (2010)37 which miscalculated
the weights for serial autocorrelation. Using the corrected version (v3) in the authors’ Stata
code results in the ‘corrected’ standard errors in the adjacent column.

b The within or ‘projected’ R? corresponds to the R? of the mean-deviated regression, i.e.,
after removing region fixed effects, and represents the share of the variation in the outcome
within regions that is captured by the model.

Table 2. Frequentist estimates of slope coefficients of the single-level models. The raw regression coefficients are displayed;
they represent additive changes in y in Gaussian models, and additive changes in log(y) in negative binomial models, where y is

the number of conflicts.
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Figure 2. Posterior distributions of the central slope coefficients of the Bayesian negative binomial

models. Pink: single-level model (varying-intercept, fixed-slope), parameters a, 7, 6. Blue and green:

multilevel models (blue: intercepts and slopes partially pooled across regions; green: intercepts
partially pooled across regions and periods, slopes partially pooled across regions), hyperparameters
00, Yo, 6p. 95% credible intervals are shown as shaded areas under the curves around the median point
estimates.
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Figure 3. Posterior distributions of the partially-pooled region-specific intercepts and slope
coefficients (model (6)). 95% credible intervals are shown as shaded areas under the curves around
the median point estimates.

Model (4) Normal Model (5) NB Model (6) NB Model (7) NB
region and time FEs region and time FEs pooled region effects, time FEs pooled region effects, pooled period effects
16000
2000 2000 2000
12000
1500 1500 1500
8000
1000 1000 1000
4000 500 500 500
0 0 0 0
0.0 0.2 0.4 0.6 0.64 0.66 0.68 0.70 064 0.66 0.68 0.70 0.63 0.65 0.67 0.69 0.7:

Figure 4. Graphical posterior predictive check: comparison of the proportion of zeros in observed vs simulated datasets.
For each model, 8000 datasets are simulated from the posterior predictive distribution using the observed predictors. The
light blue histogram represents the distribution of the value of the statistic (the proportion of zeros) across the simulated
datasets. The dark blue vertical line is the value of this statistic for the observed sample.
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Model @) 5) ©6) @)
Condit. distribution Normal NB NB NB
TA 0.71 0.08 0.12 0.19
(0.30) 0.12) (0.13) 0.12)
DL 0.08 0.02 0.01 0.01
(0.02) (0.01) (0.02) (0.02)
PA —0.47 —0.04 —0.03 —0.03
(0.31) (0.16) (0.17) (0.16)
TA; —11.6 —11.13
(2.37) (2.23)
DL; 0.37 0.36
0.19) (0.18)
PA; 1.64 1.85
(3.07) (3.07)
TAmy 0.57
(0.29)
DL,y -0.07
(0.04)
Cony 0.01
(0.00)
region FEs FEs pooled pooled
month FEs FEs FEs pooled
N 2,808 2,808 2,808 2,808
ELPD —8090.2  —2861.7 —2833.8 —2809.8
ELPDygifr —5280.3 —51.8 —24 0
SE[ELPDy;] 186.4 13.8 9.5 0

Table 3. Bayesian central estimates of slope coefficients of single-level and multilevel models. For each
regressor, the table display summaries of its marginal posterior distribution: the distribution’s median (top
sub-row) and an estimate of the distribution’s standard deviation (bottom sub-row, in parentheses) based on
a scaling of the median absolute deviation around that median. ELPDy;¢ corresponds to the difference in
expected log predictive density (ELPD) between models, and SE[ELPDy;f] to the standard error of that

difference, where the reference is the model with the largest ELPD (model (7)).
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Supplementary Information

S.1 Overview of systematic reviews of the climate-migration-conflict literatures (2013-2024)

Over the past twelve years (2013-2024), the literature examining relationships between climate change, migration, and conflict
has been subject to extensive systematic review, with at least 21 reviews published during this period—12 focusing on
migration'>23%3345 and 9 on conflict®*6-10:12-14.32.46 " Thig proliferation of meta-analytical work reflects both the growing
importance of the topic and the persistent challenges in reaching consensus about climate impacts on human mobility and social
stability.

The systematic reviews highlight a high methodological diversity. Early syntheses identified distinct modeling approaches
including spatial vulnerability models, hazard analysis models, and agent-based modeling for migration studies***}. The
econometric literature has favored multivariate regression models and gravity models, while simulation approaches have
employed agent-based models and integrated assessment models. The inference approaches used also differ. At the highest
level, we can first separate two classes of models: (i) computational models, which use simulations to study systems of interest;
these include agent-based models*’-#®, system dynamics models*’, computable general equilibrium models®’, and integrated
models’'; (i) empirical analyses using regression models, from simple least squares to multilevel generalized linear models
and nonparametric predictive models. Regression-based approaches can be classified along multiple dimensions, such as
the functional form of the relationship between predictor and outcome variables, the assumed conditional distribution of the
outcome variable, and the stated end goal of the statistical exercise—notably prediction or causal inference (which can be
considered as conditional prediction). Table S1 illustrates the diversity of approaches as they leverage some combination across
these key dimensions, based on a sample of studies in the literature—each cited by at least one of the 21 literature reviews.
Multiple reviews also emphasize that the lack of comparable data and standardized measures across contexts prevents making
generalizations that would facilitate the development of future scenarios™*°. The literature does not use core concepts and
variables in a standardized manner, with different operationalizations of dependent variables (onset versus incidence of conflict,
various types of displacement) and independent variables requiring nuanced theoretical approaches”.

The migration literature presents complex findings. Reviews consistently identify that environmental change alone does
not cause migration; rather, it is the interaction of environmental factors with non-environmental factors that drives mobility
decisions>3°. This insight has led to the development of frameworks distinguishing between vulnerability and capability effects,
where climate shocks affect both household resources necessary for migration and the risk of remaining in place*!. Several
important patterns emerge: climate variability produces different responses than long-term climate change, slow-onset events
produce different migration outcomes than fast-onset events, and the relationship between climate severity and migration is
non-linear, with threshold effects determining whether vulnerability or capability channels dominate. The most recent and
largest meta-analysis synthesizes 96 studies and finds an overall average effect on migration that is small for both slow- and
rapid-onset events, but positive and significant’. It also highlights that across studies, climate is found to play diverse and even
opposite roles: a driver of migration, a constraint to mobility, or having no significant role among other drivers—highlighting
the fundamental heterogeneity in climate-migration relationships.

The conflict literature presents a more polarized landscape. Early systematic reviews found little consensus on the physical
pathways connecting climate change to violent conflicts®>>. However, the emergence of the "climate-economy" literature,
employing reduced-form econometric models with high-frequency climate variation and fixed effects, has claimed to establish
robust causal relationships. Meta-analyses that examined studies meeting strict econometric criteria—requiring time-series
variation, location-specific fixed effects, and trend controls—found consistent support for climate-conflict links'> 4. However,
reviews also note a frequency-identification trade-off: populations evolve faster than many low-frequency climatic changes
of interest, undermining the comparability of control and treatment populations over time'> '3, and highlight the limited
insights into mechanisms and policy pathways®. The latest review still notes "a remarkable inconsistency of evidence among
publications"'°.

Across the climate-migration-conflict nexus, a critical finding across assessments is the presence of significant methodologi-
cal limitations and selection biases. Methodological choices substantially influence the probability of finding climate effects,
with different econometric techniques, climate measures, and outcome definitions producing systematically different results’.
The literature’s focus on econometric identification has excluded valuable predictive modeling approaches'-*!, while geographic
coverage shows systematic biases with certain regions over-represented while other conflict-affected or climate-vulnerable
regions remain understudied. The reviews consistently identify the absence of robust theoretical frameworks as a fundamental
limitation. This theoretical gap contributes to the proliferation of empirical approaches without clear guidance on appropriate
model specifications or expected effect magnitudes. A recurring concern is also the external validity of historical relationships
for future climate scenarios, as adaptation could fundamentally alter observed relationships'3-32.

Conclusion. After more than a decade of systematic review, the persistence of mixed findings across multiple comprehensive
reviews suggests that methodological diversity, while valuable, may be insufficient to resolve core empirical questions in the
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climate-migration-conflict literature without stronger theoretical foundations and more attention to predictive performance
alongside causal identification. This suggests that purely econometric approaches to causal identification may need to be
complemented by more flexible modeling frameworks that can accommodate heterogeneity, non-linearity, and complex
interactions while maintaining rigorous standards for causal inference. This integration of econometric identification strategies
with predictive modeling—as advocated in our main analysis—represents a promising direction for advancing both scientific
understanding and policy relevance in this critical area of research.

S.2 Diagnostic plots of the fixed effects linear model
Figure S1 presents scatterplots of the model’s main variables—adjusted for the region, month-year and region-month fixed
effects by using the residuals of a linear regression of each variable on these fixed effects. The results suggest no obvious strong
relationships between the outcome and the explanatory variables.

Figure S2 presents diagnostic residual plots of the model. From left to right, top to bottom, the sub-panels provide the
following information:

* "Residuals vs. Fitted" shows whether the residuals are equally spread around a horizontal line or display a pat-
tern—suggesting a nonlinear relationship that was not captured by the model.

* "Normal Q-Q" shows how the distribution of the residuals aligns with a normal distribution.

* "Scale-Location" presents the spread of transformed residuals across the range of predicted values, a uniform vertical
spread indicating uniform variance.

» "Residuals vs. Leverage" highlights influential observations as those outside "Cook’s distance lines," i.e., whose Cook’s
distance (the change in the predicted value if the given observation were omitted) is large.

The heteroscedasticity in residuals raises the concern that a subset of influential observations may have a disproportionate
impact on the coefficients. The Residuals vs. Leverage plot shows residuals with high values (up to 15 standard deviations) but
not high leverage.

S.3 Alternative multilevel specifications

S.3.1 Multilevel Gaussian model

To assess how the predictive performance changes when using a multilevel model, compared to the original specification, we
fit, considering the original Gaussian functional form, the different multilevel models considered, namely: pooling regional
intercepts only (model (4’)) and pooling separately both regional intercepts and time periods (model (4”)). Results are presented
in Table S2. We find, as captured by the expected log predictive density (ELPD), that the partial pooling models perform
marginally better than the model with fixed effects. However, they do not match the performance of the NB model which
accounts for the count nature of the outcome data.

S8.3.2 Pooling of period effects

Model (7) relaxes the assumption of unrelated effects across months by pooling the temporal effects, i.e., modeling them as
random effects, and includes a time-varying linear climate predictor C; that is experienced across all regions. This predictor for
the country-wide period effect w; is constructed from a relevant climate time series c;, such as a drought index, or in our case,
as it is readily available, the precipitation anomaly PA;.

In our main specification, the climate predictor is defined as G; =Y ; (@(67‘(’5), where Q, (.5) is the median of the climate time
series, so as to capture threshold exceedance. Alternatively, it could be defined so as to emphasize deviations from the average,
such as C' =Y, Cgl;[fj" , where (., is the mean of the climate time series and SD|c;] its standard deviation.

Figure S3 shows a graphical comparison of relevant statistics of the data observed—namely, the proportion of zeros, owing
to the count nature of the outcome—against that of replicated datasets from the two model fits. The result suggests that the two
models have comparable expected predictive ability. The estimation of their ELPD by leave-one-out cross-validation confirms
this result, with a small and non-statistically significant difference of 1.2 in expected ELPD.

S.4 Estimation details
All estimations were conducted using the statistical software R (v4.5.1).

Single-level models. The linear regression for the replication exercise was estimated using the function felm of the
1fe package (v3.1.1). The adjustment for serial and spatial autocorrelation, implemented in the original paper with the
ols_spatial_HAC function available for Stata by Hsiang (2010)°3, was implemented by adapting the function ConleySEs
available for R by Darin Christensen .

Residual plots were obtained with the R package DHARMa (v 0.4.7) which uses a simulation-based approach to create
interpretable scaled residuals from generalized linear mixed models®.
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Bayesian models. All Bayesian models were estimated using the rstanarm package (v2.32.1), which interfaces with the
Stan C++ library for Bayesian estimation. Each model was run with 4 chains, with 8000 iterations per chain (4000 warm-up).
Convergence was assessed and ensured based on the potential scale reduction factor on split chains R-hat.

Each parameter was assigned the package’s default "weakly informative" priors: centered autoscaled normal for slope
coefficients and exponential(1) for the negative binomial dispersion parameter. These priors regularize estimation by ruling
out extreme parameter values while leaving most likelihood information intact. Regression coefficients are given independent
normal(0, 2.5) baseline priors, whose variances are then automatically adjusted to the scale of each predictor and outcome.
Estimation is thereby primarily driven by the data and the partial pooling structure. The effective priors of the regressors
in models 5 to 7 are presented in Table S3. For further details on the defaults, we refer the reader to the rstanarm
documentation’”’.

Because no external prior information was available, we chose weakly informative priors to minimize their influence. In
such cases, the specific distributional form (e.g., normal or uniform) has little effect once the variance is set sufficiently large.
More informative priors could be useful, especially with smaller or noisier datasets, if prior knowledge exists—for example, if
posterior distributions from historical analyses were available. The Bayesian framework readily accommodates this flexibility,
though such extensions are beyond the scope of the present study.

As estimation proceeds by simulation rather than analytic inversion of large matrices, numerical stability is not a concern.
Convergence issues may arise if overly complex correlation structures were imposed in the priors.
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Figure S1. Scatterplots and correlations of the main variables after accounting for the region,
month-year and region-month fixed effects. Top-panel: locally weighted scatterplot smoothing
(LOWESS) lines with span=2/3.
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Residuals vs Fitted Q-Q Residuals
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Figure S2. Diagnostic residual plots of the reduced-form model.
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Notes: For each model, S = 8000 datasets are simulated from the posterior predictive distribution using the observed
predictors. The light blue histogram represents the distribution of the value of the test statistic (the proportion of zeros)
across the simulated datasets. The dark blue vertical line is the value of this statistic for the observed sample. The
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climate forcing a,,y is defined as ) ; Tl5 in model (7) and ) ; D[] in model (7 alt.).

Figure S3. Graphical posterior predictive check: comparison of the proportion of zeros in
observed vs simulated datasets; Models with partially-pooled period effects.
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Figure S4. Map of the 18 administrative regions in Somalia. This figure was created using the
statistical software R, version 4.5.1 (https://www.r-project.org).
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Pooling of individual effects
fully pooled (no FEs) X X X
no pooling (unit/group FEs) X X X
partial pooling (multilevel) X X
Partial vs total effect of climate
reduced form w/o channels X X X X X
disentangle the reduced form relationship X X X X X
Functional form of the relationship with climate
explanatory variables
linear X X X X X
non-linear X
Type of outcome variable
binary (event) X X X
count or flow X X X X
Goal and use
association X X X X
prediction X
causal inference X X X
Estimation
OLS, GLS X X X X X
ML X X X X
GMM
Bayesian
Post-estimation standard error adjustment
Heteroskedasticity robust X X
Clustering X X
Serial/spatial correlation using a kernel X

Table S1. Attributes of regression-based approaches in the climate-fueled migration and conflict literatures,
based on a sample of studies selected in systematic reviews.
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Model 4) 4 () 5) (6) (7N

Condit. distribution =~ Normal = Normal  Normal NB NB NB
TA 0.71 0.94 0.99 0.08 0.12 0.19
(0.30) (0.31) (0.31) 0.12) (0.13) (0.12)
DL 0.08 0.07 0.07 0.02 0.01 0.01
(0.02) (0.05) (0.04) (0.01) (0.02) (0.02)
PA -0.47 -0.26 -0.21 -0.04 -0.03 -0.03
(0.31) (0.29) (0.29) (0.16) 0.17) (0.16)
TA; -9.33 -7.73 -11.6 -11.13
(2.53) (2.57) (2.37) (2.23)
DL; 0.29 0.22 0.37 0.36
0.21) (0.21) (0.19) (0.18)
PA; -0.59 0.01 1.64 1.85
(3.40) (3.41) (3.07) (3.07)
TApy -0.50 0.57
(0.39) (0.29)
DL,y -0.07 -0.07
(0.04) (0.04)
Cony 0.01 0.01
(0.01) (0.00)
region FEs pooled pooled FEs pooled pooled
month FEs FEs pooled FEs FEs pooled
N 2,808 2,808 2,808 2,808 2,808 2,808
ELPD -8090.2  -7815.7  -7787.3  -2861.7 -2833.8  -2809.8
ELPDy -5280.3  -5005.9  -4977.5 -51.8 -24 0
SE[ELPDy;g] 186.4 204.5 2133 13.8 9.5 0

Table S2. Bayesian central estimates of slope coefficients of single-level and multilevel models. For each
regressor, the two sub-rows display summaries of its marginal posterior distribution: the distribution’s
median (top) and an estimate of the distribution’s standard deviation (bottom, in parentheses), based on a
scaling of the Median Absolute Deviation around that median. ELPDy;s corresponds to the difference in
ELPD between models, and SE[ELPD ;] to the standard error of that difference, where the reference is the
model with the largest ELPD (model (7)).
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Model(s) Variable(s) Regressor(s) Distribution
(%), (6), (N 0% TA normal(0,4.21)
(%), (6), (N % DL normal(0,0.43)
(), (6), (1) o PA normal(0,5.76)

5) {¢:} {1[region =]} normal(0, 10.91)
(5), (6) {Wmy} {1[year,month = my]}  normal(0,31.32)
(6), (7) m TA; normal(0,24.48)
(©), (7 Up! DL, normal (0, 1.99)
(6), (7) 3 PA; normal(0,38.91)

@) Vi TApy normal(0,4.9)

(N 2] DL,y normal(0,0.62)

(N v3 Ciny normal(0,0.09)

(), (6), (N 0 exponential(1)

Table S3. Prior distributions of the regression coefficients and reciprocal dispersion parameter of the
multilevel negative binomial models.
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