Claire Palandri updated: April 1, 2024

Wrangling spatial data in R

One hindrance to wrangling spatial data in R is that there is no unified spatial toolkit. Several packages are
often needed, that may overlap or clash. Spatial data work is not R’s comparative advantage.

But it allows for a completely integrated workflow. If one’s project focus is not spatial analysis (if it is, use
a GIS software) but requires wrangling some spatial data for subsequent statistical analysis, one might be
better off doing it in R.

This document contains some basic information and tools to deal with spatial data in R, notably: the main
attributes of spatial data, various formats, key R packages, more specialized packages, and useful chains of
commands (e.g., how to unproject projected data).

Contents
1 Characteristics of spatial data 2
1.1 Type: vector vsraster L 2
1.2 Spatial attributes L 2
Coordinate Reference System (CRS) 3
2 R packages 6
2.1 Note: Robjects o e 6
2.2 Main packages: [sp::], [sf::], [raster::] 6
2.3 Other packages e 7
3 Operations on spatial layers 9
3.1 Converting data from one class to another 0oL 9
3.2 Misc. single-layer operations Lo 9
3.3 Misc. multi-layer operations Lo 10
4 Plot using [ggplot2::] 11
4.1 Visualizing usual spatial objects: geom_ point(), _polygon(), _tile() 11
4.2 Visualizing sf objects: geom_sf()o 11

1 Characteristics of spatial data

1.1 Type: vector vs raster

Spatial data! can be categorized into two types, based on how they express geographical features and
store their information: vectors and rasters. For each type, multiple data formats have been developed:
shapefiles, netCDFs... Some formats can contain both, e.g., .gdb (Esri’s geodatabase file format).

R has packages to handle virtually any typexformat of spatial data, i.e., they provide functions to load the
data, wrangle them into desirable formats, and analyze them.

Data type

Vector

Vectors consider the features as geometri-
cal shapes: points, lines, polygons; us-
ing x,y coordinates to define their location.

Vectors are useful to define centers or
boundaries of features.

Raster

Rasters store information of features in
the form of a grid, i.e., rows and columns of
cells, with each cell storing a single value.

Rasters are useful to describe interiors
rather than boundaries.

Data format

& file exten- | ® GeoJSON e JPEG, TIFF
sion e TIGER e ESRI grid
o ... e netCDF: .nc
e GRIB
Some split the data across multiple files: . .

e shapefile: .shp, .shx, .dbf, .prj
e MaplInfo: .MIF, .MID

1.2 Spatial attributes

Spatial data have three spatial attributes: the coordinate reference system, the extent, and the resolution.
One should find them in the metadata.

The Coordinate Reference System (CRS)

Spatial data represent features located on the Earth’s 3-D surface. All vector and raster data express
these locations using sets of coordinates, so they use a framework to precisely measure these locations on
the Earth’s surface as coordinates, called a Coordinate Reference System (CRS). To conduct any spatial
analysis using several layers, we must first put them in the same CRS. The next page describes these CRSs
in details.

1Often, the term ‘geospatial’ is used instead of ‘spatial’ data. ‘Geo’ refers to ‘geography’ (the study of the surface of the
earth), indicating that the data have a locational component, they refer to locations on the Earth. ‘Geographic’ is the right
word for graphic presentation (e.g., maps) of features and phenomena on or near the Earth’s surface. Geographic data are a
significant subset of spatial data, although the terms geographic, spatial, and geospatial are often used interchangeably. Source:
http://basudebbhatta.blogspot.com/2010/02/spatial-and-geospatial.html

http://basudebbhatta.blogspot.com/2010/02/spatial-and-geospatial.html

Coordinate Reference System (CRS)

A CRS is a framework to measure locations on the Earth’s surface with coordinates. A CRS can be rep-
resented using either an EPSG numeric code,? a ‘proj4string’ which cites the CRS’ core key elements, or a
‘well-known text’ representation which lists all its elements.

There are two types of spatial coordinates and therefore of CRSs:

e unprojected or ‘geographic’: locations are defined with {lon, lat} coordinates. Ex: EPsc:4326
The Earth is referred to as a 3-D object. This 3-D sphere is also referred to as S2.

e projected, i.e., associated to points on a flat space: locations are defined with {x, y} coordinates.
Ex: EPsG:3857
Starting from a base geographic CRS, the 3-D surface is translated to a 2-D surface using some
projection (UTM, Mercator...). Latitude and longitude are themselves functions of {x,y}. This 2-D
flat space is also referred to as R2.

The table below lists the imbricated elements of unprojected and projected CRSs, using an example of each:

Example of geographic CRS Example of projected CRS
Element WGS 84 (EPSG 4326) WGS 84 Pseudo-Mercator (EPSG 3857)
e Base geographic CRS WGS 84 (EPSG 4326) WGS 84 (EPSG 4326)
— Datum WGS 84 ensemble (EPSG 6326) v

* Model of Earth’s shape | WGS 84 ellipsoid (EPSG 7030)
* Anchor point
— Prime meridian Greenwich (EPSG 8901)
— Coordinate System® Ellipsoidal 2D, degree (EPSG 9122)
— Area of use World ¢
e Projection or “conversion” | —
— Method Pseudo Mercator (EPSG 1024)
— Parameters
e Coordinate System - Cartesian 2D, meter (EPSG 9001)
e Area of use - World between 85.06°S, 85.06°N

Misc. notes:

— The full list of elements can be seen using the CRS’s well-known text (WKT) representation. One can

find it in R with the function sp::CRS("EPSG:<MY_EPSG>") , or on the EPSG registry: https://epsg.io.

In R, the datum EPsG:6326 is the default assumed for a CRS declared with a PROJ string.

— One can set a CRS by using a EPSG code in a proj4string definition with +init=epsg:<EPSG> . This will
make the PROJ library automatically add the rest of the parameters.

— It isn’t obvious whether one should use a projected or an unprojected CRS when doing analysis. Com-
putations on the ellipsoid are considered more accurate, but are also slower.

2CRSs have EPSG codes, but so do individual elements of CRSs... Such that when one displays the full detailed represen-
tation of a CRS, one will see many imbricated EPSG codes. EPSGs are unique identifiers, whereas names can be ambiguous.
For example, “World Geodetic System 1984” (WGS84) may refer to the CRS, its datum, or its ellipsoid model, but these three
elements have distinct EPSG codes: 4316, 6326, and 7030.

3A Coordinate System is a set of axes with units. Geodetic axes (longitude and latitude) have an angle unit (e.g., degree),
others, e.g., height, have a length unit (e.g., meter).

https://epsg.io

sf::st_distance() appears to give much more accurate results when using unprojected objects.

Examples of common CRSs:
e Google Earth is in the geographic CRS “WGS 84” (EPSG code: 4326)

e Google Maps and many other popular web mapping applications are in the projected CRS “WGS 84
Pseudo-Mercator”

— EPSG code: 3857
— PROJ.4 representation:*

+proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +
units=m +nadgrids=@null +wktext +no_defs +type=crs

— WKT2 representation:

PROJCRS["WGS 84 / Pseudo-Mercator",
BASEGEOGCRS ["WGS 84",

ENSEMBLE ["World Geodetic System 1984 ensemble",
MEMBER ["World Geodetic System 1984 (Transit)"],
MEMBER ["World Geodetic System 1984 (G730)"],
MEMBER ["World Geodetic System 1984 (G873)"],
MEMBER ["World Geodetic System 1984 (G1150)"],
MEMBER ["World Geodetic System 1984 (G1674)"],
MEMBER ["World Geodetic System 1984 (G1762)"],
MEMBER ["World Geodetic System 1984 (G2139)"],
ELLIPSOID["WGS 84" ,6378137,298.257223563,

LENGTHUNIT ["metre",1]],
ENSEMBLEACCURACY [2.0]],

PRIMEM ["Greenwich",0,

ANGLEUNIT ["degree" ,0.0174532925199433]1],

ID["EPSG",4326]1],

CONVERSION ["Popular Visualisation Pseudo-Mercator",

METHOD ["Popular Visualisation Pseudo Mercator",
ID["EPSG",1024]],

PARAMETER ["Latitude of natural origin",O0,
ANGLEUNIT ["degree" ,0.0174532925199433] ,
ID["EPSG",8801]1]1,

PARAMETER ["Longitude of natural origin",O0,
ANGLEUNIT ["degree" ,0.0174532925199433],
ID["EPSG",8802]],

PARAMETER ["False easting",O0,

LENGTHUNIT ["metre",1], ID["EPSG",8806]1],

PARAMETER ["False northing",0,

LENGTHUNIT ["metre",1], ID["EPSG",8807]11],
CS[Cartesian,h2],
AXIS["easting (X)",east, ORDER[1],
LENGTHUNIT ["metre",1]],

AXIS["northing (Y)",north, ORDER[2],

LENGTHUNIT ["metre",1]],
USAGE [

SCOPE ["Web mapping and visualisation."],

AREA["World between 85.06S and 85.06N."],

BBOX[-85.06,-180,85.06,180]1],

ID["EPSG" ,3857]]

4Recently, it has become discouraged to use projdstrings to represent a CRS, and recommended to use them to specify
transformations between CRSs, but not specify a CRS itself.

2 R packages

2.1 Note: R objects

Everything in R is an object. An object has many features, two of particular importance are: the basic type
of its data (low-level), and how these data are combined or structured (high-level).

object’s feature

R function

most common options

data type
(low-level)

typeof O

character
double
integer
logical
complex
closure

sS4

functions

some 54 objects. Ex: the sp classes

data structure
(high-level)

atomic vector
list

matrix

data frame
array

factor

1D, homogeneous (contents must be of the same type)
1D, heterogeneous (contents can be of different types)
2D, homogeneous
2D, heterogeneous. It is a list of equal-length vectors.
nD, homogeneous

a vector that can contain only predefined values.

2.2 Main packages: [sp::], [sf::], [raster::]

Storage type Vector Raster

Package [sp::] [sf::] [raster::]

Object class | object is Spatial* (Point, | object is stored as a data | object is stored as
Line, Polygon), or | frame with a ‘geometry’ list | a RasterLayer or
Spatial*DataFrame if | column that contains the ge- | RasterBrick
has attribute data ographic information®

Functions

load into R st_read() .

— raster() for single-layers
— brick() for multi-bands
— then getValues() to force
R to import the values
unprojected? is.projected() isLonLat ()

get CRS CRS() st_crs() crs()

change CRS spTransform() st_transform() projectRaster()

all of the above | summary ()

Weirdly enough, many functions of the [raster::] package also work on wector data objects. Ex: to read
or write a shapeﬁle: raster: :shapefile(x, filename=’’, overwrite=FALSE)

The [sf::] package assumes an R2, flat space. Up to version 0.9-x, some functions would warn the user
that it is doing R?, flat computations with such coordinates with messages like “although coordinates are
longitude/latitude, st_intersects assumes that they are planar” Starting with sf version 1.0, if you provide
a spatial object in a geographical coordinate reference system, sf uses the new package sf2 for spherical
geometry, which has functions for computing pretty much all measures, predicates and transformations on
the sphere.

e Switching between S2 and GEOS:
The two-dimensional R2 library that was formerly used by sf is GEOS, and sf can be instrumented to use
GEOS or S2, by switching spherical geometry (S2) on with sf_use_s2(TRUE) or off with sf_use_s2(FALSE) .

2.3 Other packages

For netCDF's: [ncdf4::]

NetCDF is an array-oriented data format commonly used in climatology, meteorology and GIS applications.
NetCDF variables can be 1-dimensional vectors, 2-dimensional matrices, n-dimensional arrays.

Steps to read in the contents of a netCDF (.nc) file:

(1) nc_open() : open the file

(2) print(Q) : see the metadata

5A record in an sf object is called a simple “feature”. sf data are represented using three nested classes. The table (of
features) is of class sf (and data.frame). It contains the feature attributes (regular columns) and the feature geometries,

as a list-column of class sfc. We can retrieve this geometry column using st_geometry() . The geometry of an individual

simple feature is of class sfg. The 7 most common types of feature geometries are: point, linestring, polygon, multipoint,
multilinestring, multipolygon, geometrycollection.

ncvar_get () : get the data from a variable; then store locally as array
ncatt_get () : get variable attributes (projection, fill value...)

e replace the fill-values (i.e., grid cells with missing data) by NA

nc_close() : close the file

3 Operations on spatial layers

3.1 Converting data from one class to another

We may need to convert data from one class to another. For example, functions from the raster package
do not work with sf objects, so we have to convert those to sp objects.

e Convert sf to sp: sf::as_Spatial() or as(, "Spatial")

e Convert sp to sf: sf::st_as_sf()

e Convert data.frame to sf: by identifying the coordinates as such

sf::st_as_sf(, coords = c("lon", "lat"), crs = 4326)

e Convert sf to data.frame, storing the coordinates and crs:

myData.df <- myData.sf %>%
dplyr::mutate(lon = sf::st_coordinates(.)[,1],
lat = sf::st_coordinates(.)[,2],
crs_epsg = sf::st_crs(.)$epsg) %>%
st_drop_geometry ()

e Convert raster to data.frame (the stored coordinates correspond to the cell’s centroid)

myData.df <- raster::as.data.frame(myData.ras, xy=TRUE, 10ng=TRUE) %>%
separate (layer, into=c("filename", "layer"), sep="\\.", convert=TRUE)

3.2 Misc. single-layer operations

e Compute buffers: sf::st_buffer(, dist)

e Compute polygon centroids: sf::st_centroid()

e Compute polygon areas: sf::st_area()

e Compute the coordinates of the bounding box: sf::st_bbox()
e Create a bounding box: sf::st_make_grid(, n = 1)

e Make a grid covering your data: sf::st_make_grid(, n)

e Dissolve features into a single feature

— Polygons; Points (get bundled into a single ‘multipoint’ geometry; required step before creating
a convex huH): sf::st_union()

— Raster cells: raster::aggregate(, dissolve = TRUE)

e Crop a raster: raster::crop(x,y)

3.3 Misc. multi-layer operations

Compute relationships between objects

e Which x features intersect with y features: sf::st_intersects(x, y)
— Ex: Which points in y fall inside the polygons in x : sf::st_intersects(x, y)[[1]]

— Ex: Does the point x fall inside the polygon y : sf::st_intersects(x, y, sparse=FALSE) (returns
Boolean)

e Which y elements are fully contained in x elements: sf::st_contains(x, y)
Returns a list of the same length as x , where each element is the vector of the indices of the elements
in y that fall in that element of x .

e What geometries cross each other’s boundaries: ::st_overlaps(x,y)
Le., for each x geometry, identifies the y geometries for which x and y share space, are of the same
dimension, but are not completely contained by each other.

e Distance between features: sf::st_distance(x, y)

e Extract cell values from x at locations of interest in y : raster::extract(x, y, fun)
— with points, returns the raster values under each point

— with polygons, returns either all values in the polygon (fun = NULL) , or a summary, e.g., (fun = mean)

Modify objects

e Spatial join: add attributes/information in y to the x layer sf::st_join(x, y)
e Creates geometry of the shared portion of x and y : sf::st_intersection(x, y)

e Crop a raster using polygons: raster::mask() then raster::trim()
/\ raster::mask() removes cells that are only partially within a polygon. To keep those, do:

1. get, for each cell, the fraction that’s within the polygon:

myMask.ras <- raster::rasterize(x = myPolygon, y = myRas.ras, getCover = TRUE)

2. replace Os by NAS: myMask.ras[myMask.ras==0] <- NA

3. use that as the new mask:

trimmedRas.ras <-
raster::mask(x=myRas.ras, mask=myMask.ras) %>/
raster::trim(values=NA)

e Raster math: raster::overlay(x, y, fun)

10

4 Plot using [ggplot2::]

4.1 Visualizing usual spatial objects: geom_point(), _polygon(), _tile()

ggplot does not work with Spatial* or Raster* objects. They must therefore first be converted into data
frames:

e for a SpatialPointsDataFrame:

myData.df <- data.frame(myPointData.sp)

ggplot O +
geom_point (data = myData.df, aes(x = lon, y = lat))

e for a SpatialPolygonsDataFrame, tidy the object:

myData.df <- broom::tidy(myPolygonData.sp, region = "id")

ggplot () +
geom_polygon(data = myData.df, aes(x = lon, y = lat, group = group)) +
coord_map (projection = "albers", parameters = c(25,50))

e for a Raster object:

a. convert into a data.frame
myData.df <- as.data.frame(myRasterData.ras, xy=TRUE)
b. plot
ggplot () +
geom_tile(data = myData.df, aes(x, y, fill = value))

Choose a projection with coord_map():

e Mercator: cylindrical: equally spaced straight meridians, conformal

+ coord_map ()

e conformal, true scale on lat0 and latl

+ coord_map(projection = "lambert", parameters = c(25,50))

e Albers conic equal-area projection, true scale on latQ and latl

+ coord_map(projection = "albers", parameters = c(25,50))

4.2 Visualizing sf objects: geom_sf ()

geom_sf () is an unusual geom as it draws different geometric objects, depending on what geometries are in
the data: points, lines, or polygons.

ggplot () +
geom_sf (data = myData.sf, aes(geometry = geometry)) +
geom_polygon(data = myOtherData.sp, aes(x=lon, y=lat, group=group)) +
geom_sf_text (data = myData.sf, aes(label = name)) +

coord_sf (crs = 4326)

11

	Characteristics of spatial data
	Type: vector vs raster
	Spatial attributes
	Coordinate Reference System (CRS)

	R packages
	Note: R objects
	Main packages: [sp::], [sf::], [raster::]
	Other packages

	Operations on spatial layers
	Converting data from one class to another
	Misc. single-layer operations
	Misc. multi-layer operations

	Plot using [ggplot2::]
	Visualizing usual spatial objects: geom_point(), _polygon(), _tile()
	Visualizing sf objects: geom_sf()

