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Interpreting regression output
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1 Elements of the typical linear regression output summary

Figure 1: Summary of the results of the OLS estimation of a univariate linear regression model, in R

Regression is a tool for estimating average differences across groups. We estimate the difference in
average observed outcomes.

Residuals {ri}i Difference between the observed response values yi and those predicted ŷi.

Errors εi = yi −Xiβ, residuals are estimates of the errors: ri = yi −Xiβ̂ = yi − ŷi
Plot them to look at their distribution: is it centered around 0, is it normal...?

Coefficients For each coefficient, an estimate and the level of uncertainty for that estimate.

• Slope estimate β̂OLS

j
∶= argmin

β
∑n

i=1 r
2
i
= (X ′X)−1X ′y

Interpretation as comparison:

– Slope coefficients should be interpreted as comparisons between units that differ in one predictor:
“β̂j = how y differs, on average, when comparing units that differ by 1 in the predictor xj.”

1

– With multiple predictors, interpretations are contingent on the other variables in the model. →
Interpret each coefficient “with all the other predictors held constant”. Note also that if predictors
are correlated, β̂j measures not the total change in y associated with a difference in xj , but the
additional change associated with the change in xj , when the effects of all other variables are
already accounted for.

– By nature of xj :

1Interpretation as changes within units, i.e., a “counterfactual” interpretation as the expected change in y caused by adding
1 to xy requires a causal identification. I.e., from the data alone, a regression only tells us about comparisons between units,
not about changes within units.

2



∗ continuous: β̂j = average difference in y for a 1-unit difference in xj , holding other x’s
constant;

∗ categorical, e.g., binary: β̂j = average difference in y between the category for which xj = 0
and the category for which = 1.

If there is a single regressor, the estimand is βOLS = cov[x,y]
V[x] and the estimator (its sample analog)

β̂OLS =
1
n ∑i(xi−x̄)(yi−ȳ)

1
n ∑i(xi−x̄)2

. In the multivariate regression model, each estimand is βk
OLS = cov[x̃k,y]

V[x̃k]
where x̃k

is the residual from the regression of xk on all the other covariates.

Centering or standardizing X:

– Centering = subtracting the mean from each column of X: it only affects the intercept, and allows
us to interpret it as the expectation of y in a linear model.

– Standardizing = subtracting the mean of each predictor and dividing by the standard deviation:
puts all predictors on a common scale. β̂j is the expected difference in y, comparing units that
differ by one standard deviation in xj , with all other predictors fixed at their average values.

• (estimated) Standard Error SE[β̂j] =
σ̂β̂j√
n

= an estimate of the standard deviation of β̂j ’s sampling distribution.

The SE gives us a sense of our uncertainty about β̂j : the expected difference in β̂j if we were to run
the model again and again. A lower SE relative to the coefficient means more certainty.
SEs are used in computing confidence intervals and in the t-statistic for hypothesis testing.

• t-statistic tβ̂ =
β̂ −β0

SE[β̂]
The realization of the t-statistic for the null hypothesis H0: βj = 0.
tβ can be used in a two-sided2 t-test of H0, as, if the error term is normally distributed, it follows a
Student’s t-distribution under H0: tβ ∼

H0

Tn−2. If its realization tβ̂ falls in the tails of that distribution,

that would mean it is very unlikely given H0, therefore we can reject H0. We will examine that with
the two-sided p-value.

• p-value = Pr(observing a T > ∣tβ̂ ∣) under H0

I.e., the probability of observing data as extreme as that actually observed, assuming H0.
3

p-value small (< 0.05) ⇐⇒ tβ̂ falls in the tail of the Student’s T -distribution
Ô⇒ observing our tβ̂ is highly unlikely under H0

Ô⇒ reject H0

Ô⇒ there is a relationship between y and x, β̂ is “significant”.

Residual Standard Error or Standard Error of the Regression (SER)
Summary of the scale of the residuals. It is the average distance by which an observed value falls from the

2By default, statistical packages carry out a two-sided test and therefore report the two-sided p-value; however we could
also use the t-statistic to carry out a one-sided test.

3 △! The p-value is often misinterpreted to be the probability that H0 is true, when it is the probability of observing data
as extreme or more extreme than that actually observed, assuming H0. p-value = P(obs ∣ hyp) ≠ P(hyp ∣ obs)
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regression line, i.e., the accuracy to which the model can predict y. Interpretations:

• y can deviate from the true regression line by 15.38 ft, on average.
• The model can predict y to an accuracy of about 15.38 points.
• About 68% of y will be within 15.38 of the predicted value.
• SER2 = the variance “unexplained” by the model: the amount of variation remaining in y after we
remove the variation due to x.

R2 or coefficient of determination
How much better the sample data is fit by the sample regression line y = α + βX than by the sample mean
line, y = Ȳ . It is one way of measuring the goodness-of-fit. See Figure 2.

R2 = 1 − sum of squared residuals (SSR)

total sum of squares (TSS)
= 1 − ∑i (yi − ŷi)2

∑i (yi − ȳ)2
∈ [0,1]

– In most linear models, TSS = ESS+RSS, where ESS is the explained sum of squares∑i (ŷi − ȳ)2, therefore
R2 = ESS

TSS
= the proportion of the sample variance in y that is explained by X.

– △! R2 mechanically increases as more predictors are included in the regression. → Use the adjusted R2

which adjusts for the number of predictors.

F statistic for an F-test4 of overall significance.
H0: all coefficients equal 0 (no relationship between y and X). Ha: βj ≠ 0, for at least one j. We test the
full model against a model with no regressors.
F’s p-value is small ⇐⇒ at least some of the parameters are nonzero and the regression equation does have
some validity in fitting the data (the X’s are not purely random w.r.t. y)

F = mean regression sum of squares (MSR)

mean error sum of squares (MSE)
=

ESS
k

SSR
n−k−1

∈ [0,+∞[

4In general, an F -statistic is a ratio of two quantities, F -test tests the H0 that the quantities are roughly equal, i.e. F ≃ 1.
Reject H0 if F high (>> 1). How large F really needs to be depends on the number of data points and predictors: if large
sample, F -stat slightly above 1 is sufficient to reject H0; if small sample, need a large F -stat.
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2 Common test statistics for regression models

We consider tests used to assess the statistical significance of explanatory variables, in a regression of y on
p covariates X. The general approach to conducting a statistical test consists of the following steps:

1. Write the null hypothesis H0 — the hypothesis to nullify.

2. Design a test statistic T that summarizes the data’s deviation from what would be expected under H0,
and that has a specific distribution under H0. Ex:

− an F -test is any test in which the test statistic has an F distribution under H0.
− a t-test is any test in which the test statistic has a Student’s T distribution under H0;
− a Wald test is a test in which the test statistic has an asymptotic χ2 distribution under H0;
− a z-test is any test in which the test statistic has an approximately normal distribution under H0.

3. Compute the realized value of T for our data: Tobs.

4. If it falls in the tails of the distribution, i.e., it is very unlikely given H0, we can reasonably reject H0.

H0 Test statistic T Inference

z-test and t-test
Is the coefficient βj significant?

H0 ∶ βj = 0

z ∶= β̂ − β0

SD[β̂]

t ∶= β̂ − β0

ŜD[β̂]
= β̂ − β0

SE[β̂]

IF { assumptions on
means, covariances... }

Ô⇒ t
a∼
H0

N (0,1)

IF { iid normal data } Ô⇒ t ∼
H0

tn−p

z ∼
H0

N (0,1)

Wald Chi-squared test
Are the k coefficients β jointly
significant?

H0 ∶ β = 0k×1, for k parame-
ters among the p + 15

W ∶= (β̂ − β0)′ V̂−1β̂ (β̂ − β0)

with MLE estimates Ô⇒ W
a∼
H0

χ2
k

IF { iid normal data } Ô⇒ W
k
∼
H0

Fk,n−k

(W ∼
H0

χ2
k if σ2

known)

F -test of overall significance
Is our model a significantly bet-
ter fit than one with no predictors?

H0 ∶ β = 0p×1, for all p slope
parameters

F ∶= 6 ESS/(p − 1)
RSS/(n − p)

= ∑i (ŷi − ȳ)2 /(p − 1)
∑i (yi − ŷi)2 /(n − p)

IF
− the scaled SSs are ⊥⊥
− each SS ∼ χ2 (guar-

anteed if iid normal
data)

Ô⇒ F ∼
H0

Fp−1,n−p

The asymptotic standard normal distributions stem from the slope parameters having asymptotic normal
distributions themselves (from the CLT). So for large n only, we can say that the test statistics are approx-
imately normally distributed. However, for small n, they are close to normal only if the data themselves
are normal. E.g., if the data are substantially non-normal, or in the presence of outliers, the t-test can give
misleading results.

5If p = 1, the Wald statistic is equivalent to the squared t statistic: W ≡ (β̂−β0)2
V̂
β̂

, χ2
1 = N (0,1)2, F1,n−1 = t2n−1.

6The statistic is the ratio of the explained variance to the unexplained variance. ESS is the explained sum of squares, RSS
the residual sum of squares.
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3 Elements of the typical logistic regression output summary

• Log likelihood of the model. This value has no meaning in and of itself; rather, this number can be
used to help compare nested models.

• Pseudo R2: Logistic regression does not have an equivalent to the R-squared that is found in OLS
regression; however, many people have tried to come up with one. There are a wide variety of pseudo-
R-square statistics. Because this statistic does not mean what R-square means in OLS regression (the
proportion of variance explained by the predictors), we suggest interpreting this statistic with great
caution.

• Coef: They are usually by default in log-odds units, which are often difficult to interpret, so they may
be converted into odds ratios. You can do this by hand by exponentiating the coefficient, or by using
the or option with logit command, or by using the logistic command.

a. Test each coefficient

The test statistics to assess the significance of the regression parameters in logistic regression analysis are
based on chi-square statistics, as opposed to t statistics as was the case with linear regression analysis. This
is because we use a different estimation technique: MLE.

For each regression coefficient of the predictors, we can use a z-test (note not the t-test). In the output, we
have z-values and corresponding p-values.

b. Test the overall model

For the linear regression, we evaluate the overall model fit by looking at the variance explained by all the
predictors. For the logistic regression, we cannot calculate a variance. However, we can evaluate the deviance.
For a model without any predictor, we can calculate a null deviance, which is similar to variance for the
normal outcome variable. After including the predictors, we have the residual deviance. The difference
between the null deviance and the residual deviance tells how much the predictors help predict the outcome.
If the difference is significant, then overall, the predictors are significant statistically.

The difference or the decease in deviance after including the predictors follows a chi-square distribution.
(Rmk: It has a close relationship to F distribution: it is the limiting distribution of an F distribution as the
denominator degrees of freedom goes to infinity.)

There are two ways to conduct the test. From the output, we can find the Null and Residual deviances and
the corresponding degrees of freedom. Then we calculate the difference. For the mammography example, we
first get the difference between the Null deviance and the Residual deviance, 203.32-155.48= 47.84. Then,
we find the difference in the degrees of freedom 163-159=4. Then, the p-value can be calculated based on a
chi-square distribution with the degree of freedom 4. Because the p-value is smaller than 0.05, the overall
model is significant.
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4 Transformations

Inverse hyperbolic sine (IHS) transformation For outcomes that have a thick right tail, the standard
solution is to take a log transformation;7 it brings extreme values closer to the middle, so they don’t have
such a large effect on the results. However, when the outcome also has many zero-valued observations (e.g.,
wealth), natural log transformations don’t work well as ln(0) is undefined.
Instead one can use the inverse hyperbolic sine (IHS or arcsinh) transformation:

log (yi + (y2i + 1)
1
2 )

It approximates the natural logarithm (except for very small values of y, it is ≈ log(2yi) = log(2) + log(yi)),
and so it can be interpreted in exactly the same way as a standard log-transformed dependent variable, but
is defined at zero, thus allows retaining zero-valued observations.

7Another solution is to run quantile regressions and analyze each part of the distribution separately.
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5 Interpreting coefficients of a regression with...

5.1 ... Log transformations

Regression model Given a change in x, what change do we expect in y?

level-level
(linear)

y = β0 + β1x + e If x increases by 1 unit, y increases by β1 units.

log-level
(log-linear)

ln(y) = β0 + β1x + e If x increases by 1 unit, ln(y) increases by β1 units, i.e. y
increases by a factor eβ1 .

• if small β̂: can approximate: y increases by (100 × β1)%
• if large β̂: approximation invalid. y increases by ×eβ1

level-log y = β0 + β1 ln(x) + e If ln(x) increases by 1 unit, y increases by β1 units, i.e. if x
increases by 1%, y increases by β1

100
units.

log-log ln(y) = β0 + β1 ln(x) + e If x increases by 1%, y increases by β1%. (β1 is an elasticity.)

Small natural log changes can be interpreted as percentage changes

The log function is approximately linear around 1, i.e., it is reasonable to
do a first order Taylor approximation of ln(x) around x = 1:

Around x = 1, f(x) ≃ f ′(1)(x − 1) + f(1)
ln(x) ≃ 1

1
(x − 1) + 0

ln(x) ≃ x − 1
I.e., for y2 close to y1, ln(y2) − ln(y1) = ln(y2

y1
) ≃ y2

y1
− 1 = y2 − y1

y1

Hence a small difference in logs of y can be interpreted as a percentage
change in y. Therefore, in a log-linear regression ln(y) = β0 + β1x + e:

– If β̂1 small, one can say “A 1-unit increase in x corresponds to a (100 × β̂1)% additive change in y”;

– If β̂1 large, one should stick to saying “A 1-unit increase in x corresponds to a eβ̂1 factor change in y”.

Note: A classical approach for regression modeling of a right-skewed outcome on the positive real line is
to log-transform the outcome, log(Y ). Indeed, if the outcome is highly skewed, the log transformation
effectively “pulls in” high Y values that appear in the upper tail of a right-skewed distribution, narrowing
its range. It will make the outcome normal enough that linear regression is valid. When we apply standard
linear regression, we are then making the implicit assumption that log(Y ) is normally distributed: log(Y ) ∼
N (µ,σ2). With covariates, the model is: log(Y ∣X1, ...,Xk) ∼ N (β0 + β1X1 + ... + βkXk, σ

2).

5.2 ... Interacted predictors

Adding an interaction term allows the slope to vary across subgroups, and changes the interpretation of all
coefficients along the way. Examples:

• kid score = β0 + β1 mom hs + β2 mom iq + β3 mom hs ∶mom iq
β3 represents the difference in the slope for mom iq, comparing children with mothers who did and did
not complete high school.
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• y = β0 + β1x1 + β2x2 + β3x1x2 The effect of x1 is β1 + β3x2: it is different for each value of x2.
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6 R output for multilevel model fits

6.1 Setting

Multilevel models are generalizations of classical regression models. The generalization can proceed along
multiple dimensions, notably the following two:

(i) whether only intercepts or also slopes are modeled;
(ii) whether group-level predictors are included.

Example Let’s consider a two-level regression model. We could assume different distributions for the
outcome variable depending on the nature of the data, e.g., normal for continuous data, logistic for binary
data, or negative binomial for count data. Whichever distribution we consider, the generalization along the
aforementioned dimensions gives rise to the simplest four model types below:

ADD aj and bj NOT CO-VARYING (2 SEPARATE 2ND LEVELS)

∀i = 1, ...,N, j = 1, ..., J :
varying intercept varying intercept and slope

without
group-level
predictors

yreali ∼ N (aj[i] + βxi, σ2
y)

or ybinaryi ∼ Ber (exp(aj[i] + βxi))
or ycounti ∼ NB (exp(aj[i] + βxi), r)

aj ∼ F2(µa, σ2
a)

yreali ∼ N (aj[i] + bj[i]xi, σ2
y)

or ybinaryi ∼ ...
or ycounti ∼ ...

[aj
bj
] ∼MVN([µa

µb
] , [ σ

2
a σab

σab σ2
b
])

with
group-level
predictor
wj

yreali ∼ N (aj[i] + βxi, σ2
y)

or ybinaryi ∼ ...
or ycounti ∼ ...

aj ∼ F2(α0 + α1wj , σ2
a)

yreali ∼ N (aj[i] + bj[i]xi, σ2
y)

or ybinaryi ∼ ...
or ycounti ∼ ...

[aj
bj
] ∼MVN([α0

β0
] + [α1

β1
]wj , [ σ

2
a σab

σab σ2
b
])

We can estimate these models within different frameworks and using different packages. For example, in R:

• In a frequentist framework: with lme4::

• In a Bayesian framework: with rstanarm::, or with rstan::stan(), and coding the model directly
in the Stan language

△! rstanarm::summary() shows posterior means and SDs, whereas rstanarm::print() and broom::tidy()
show more robust estimators of the posterior distributions: posterior medians and MAD-SDs (estimates of
the standard deviation of the marginal posterior distributions, based on a scaling of the Median Absolute
Deviation—MAD—from the posterior medians).
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6.2 Varying intercept, no group-level predictors

Model
ycounti ∼ NB (exp(aj[i] + βxi), r)
aj ∼ N (µa, σ2

a)

Call rstanarm::stan_glmer.nb(y_count ~ 1 + x + (1 | group), mydata)

Output

• ::summary()

mean mcse sd

(Intercept) -0.812 0.004 0.114

x 0.201 0.002 0.101

b[( Intercept) group :1] 0.002 0.007 0.213

...

b[( Intercept) group :30] 0.028 0.006 0.195

reciprocal_dispersion 1.927 0.031 0.785

Sigma[group :( Intercept) ,(Intercept)] 0.055 0.004 0.067

mean_PPD 0.473 0.002 0.067

log -posterior -321.526 0.374 4.911

µ̂mean
a = −0.812, β̂mean = 0.201, âmean

1 = 0.002, ..., âmean
30 = 0.028, r̂mean = 1.927, σ̂2,mean

a = 0.055
• ::print()

Median MAD_SD

(Intercept) -0.809 0.116

x 0.202 0.095

Auxiliary parameter(s):

Median MAD_SD

reciprocal_dispersion 1.736 0.661

Error terms:

Groups Name Std.Dev.

group (Intercept) 0.2351

Num. levels: group 30

µ̂med
a = −0.809, β̂med = 0.202, r̂med = 1.736, σ̂med

a = 0.2351
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6.3 Varying intercept, with group-level predictors

Model
ycounti ∼ NB (exp(aj[i] + βxi), r)
aj ∼ N (α0 + α1wj , σ2

a)

Call rstanarm::stan_glmer.nb(y_count ~ 1 + x + w + (1 | group), mydata)

Output

• ::summary()

mean mcse sd

(Intercept) -0.834 0.005 0.108

x 0.170 0.003 0.094

w 0.171 0.003 0.075

b[( Intercept) group :1] 0.016 0.007 0.184

...

b[( Intercept) group :30] 0.051 0.008 0.196

reciprocal_dispersion 2.058 0.034 0.866

Sigma[group :( Intercept) ,(Intercept)] 0.046 0.003 0.057

mean_PPD 0.473 0.002 0.063

log -posterior -320.796 0.306 4.881

α̂mean
0 = −0.834, β̂mean = 0.170, α̂mean

1 = 0.171,
âmean
1 = 0.016, ..., âmean

30 = 0.051,
r̂mean = 2.058, σ̂2,mean

a = 0.046
• ::print()

Median MAD_SD

(Intercept) -0.831 0.106

x 0.173 0.095

w 0.172 0.074

Auxiliary parameter(s):

Median MAD_SD

reciprocal_dispersion 1.885 0.697

Error terms:

Groups Name Std.Dev.

group (Intercept) 0.2155

Num. levels: group 30

α̂med
0 = −0.831, β̂med = 0.173, α̂med

1 = 0.172,
r̂med = 1.885, σ̂med

a = 0.2155
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6.4 Varying intercept and slope, no group-level predictors

Model
ycounti ∼ NB (exp(aj[i] + bj[i] xi), r)

[aj
bj
] ∼MVN([µa

µb
] , [ σ

2
a σab

σab σ2
b
])

Call rstanarm::stan_glmer.nb(y_count ~ 1 + x + (1 + x | group), mydata)

Output

• ::summary()

mean mcse sd

(Intercept) -0.802 0.004 0.112

x 0.195 0.003 0.102

b[( Intercept) group :1] -0.015 0.005 0.159

b[x group :1] -0.006 0.005 0.130

...

b[( Intercept) group :30] 0.016 0.005 0.154

b[x group :30] -0.017 0.004 0.114

reciprocal_dispersion 1.921 0.028 0.780

Sigma[group :( Intercept) ,(Intercept)] 0.032 0.003 0.048

Sigma[group:x,( Intercept)] -0.004 0.001 0.019

Sigma[group:x,x] 0.017 0.001 0.029

mean_PPD 0.472 0.002 0.068

log -posterior -371.125 0.435 6.543

µ̂mean
a = −0.802, µ̂mean

b = 0.195, âmean
1 = −0.015, b̂mean

1 = −0.006, ..., âmean
30 = 0.016, b̂mean

30 = −0.017,
r̂mean = 1.921, σ̂2,mean

a = 0.032, σ̂2,mean
b = 0.017, σ̂mean

ab = −0.004
• ::print()

Median MAD_SD

(Intercept) -0.797 0.110

x 0.193 0.099

Auxiliary parameter(s):

Median MAD_SD

reciprocal_dispersion 1.778 0.659

Error terms:

Groups Name Std.Dev. Corr

group (Intercept) 0.1791

x 0.1322 -0.16

Num. levels: group 30

µ̂med
a = −0.797, µ̂med

b = 0.193, r̂med = 1.778, σ̂a = 0.1791, σ̂b = 0.1322, ρ̂ab ∶= σ̂ab

σ̂aσ̂b
= −0.16
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6.5 Varying intercept and slope, w. group-level predictors

Model
ycounti ∼ NB (exp(aj[i] + bj[i] xi), r)

[aj
bj
] ∼MVN([α0

β0
] + [α1

β1
]wj , [ σ

2
a σab

σab σ2
b
])

Call rstanarm::stan_glmer.nb(y_count ~ 1 + x + w + x:w + (1 + x | group), mydata)

Output

• ::summary()

mean mcse sd

(Intercept) -1.127 0.011 0.225

x 0.315 0.012 0.254

w 0.163 0.009 0.200

x:w -0.041 0.012 0.244

b[( Intercept) group :1] -0.150 0.023 0.607

b[x group :1] -0.733 0.025 0.651

...

b[( Intercept) group :30] -0.478 0.018 0.537

b[x group :30] -0.754 0.021 0.624

reciprocal_dispersion 2.066 0.026 0.650

Sigma[group :( Intercept) ,(Intercept)] 0.789 0.022 0.411

Sigma[group:x,( Intercept)] 0.833 0.021 0.371

Sigma[group:x,x] 1.487 0.026 0.531

mean_PPD 1.157 0.009 0.252

log -posterior -381.226 0.588 7.884

α̂mean
0 = −1.127, β̂mean

0 = 0.315, α̂mean
1 = 0.163, β̂mean

1 = −0.041,
âmean
1 = −0.150, b̂mean

1 = −0.733, ..., âmean
30 = −0.478, b̂mean

30 = −0.754,
r̂mean = 2.066, σ̂2,mean

a = 0.789, σ̂mean
ab = 0.833, σ̂2,mean

b = 1.487
• ::print()

Median MAD_SD

(Intercept) -1.120 0.218

x 0.317 0.239

w 0.164 0.186

x:w -0.042 0.234

Auxiliary parameter(s):

Median MAD_SD

reciprocal_dispersion 1.955 0.610

Error terms:

Groups Name Std.Dev. Corr

group (Intercept) 0.8884

x 1.2195 0.77

Num. levels: group 30

α̂med
0 = −1.120, β̂med

0 = 0.317, α̂med
1 = 0.164, β̂med

1 = −0.042,
r̂med = 1.955, σ̂a = 0.8884, σ̂b = 1.2195, ρ̂ab ∶= σ̂ab

σ̂aσ̂b
= 0.77
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Figure 2: Representation of the terms of the coefficient of determination R2 = 1 − RSS
TSS

.
The red areas represent the squared residuals w.r.t. to the average value ȳ, the blue areas
represent the squared residuals w.r.t. the linear regression. The better the linear regression
fits the data in comparison to the simple average, the higher the R2.

Source: Orzetto - https://commons.wikimedia.org/w/index.php?curid=11398293
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