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1 Motivation — Probability distributions in regression modeling

In regression modeling, we need random variables — and their probability distributions — because our
models do not fit our data exactly. A regression model is composed of:

1. a deterministic model which captures as much of the data variation as possible;

2. an error term e characterized by a probability distribution which captures the unexplained variation
(i.e., the variation that remains after predicting the population regression vector).

Regression models are therefore not deterministic. Whether they are used for parameter estimation or pre-
diction, we assess the uncertainty in our inferences/predictions using probability distributions.

Notes

• Notations

– In the context of probability theory, random variables are commonly written in capital letters. In-
deed, as we rarely use vectors but rather individualize random variables, there is no risk of confusion.

– In the modeling context, however, we are always manipulating sequences of random variables. E.g.,

in the classical linear regression model: yi = X ′iβ + ei = β0 + ∑k
j=1 βjxij + ei, ei

iid∼ (0, σ2), i =
1, ..., n, each individual yi is an individual random variable.1 As a result we manipulate many
random variables in groups, and therefore vectors and matrices. Restricting capital letters to random
variables would be problematic. Lowercase letters therefore usually refer to scalars, capital letters to
matrices, and vectors are either-or. In this document, we will use italic lowercase letters for scalars,
roman lowercase letters for vectors, and roman capital letters for matrices.
↪ Ex: xi = {xik}pk=1 is the p-dimensional vector of all dependent variables for unit i; xk = {xik}ni=1

is the n-dimensional vector of dependent variable xk for all units; X is the n × k matrix of all
independent variables for all units.

• Is xi a random or a fixed variable?

In a regression model yi ∼ f(xi, ei∣θ) ∀i, ei is a random variable, and therefore yi, a transformation
of ei, is itself a random variable. However, the explanatory variables xi may be considered random
or fixed. The implications of that choice include which versions of convergence theorems (CLTs and
LLNs) we will draw sampling-based inferences from, and the formulation of the model as yi’s marginal
or conditional distribution. The details go beyond the objective of this document; we simply note:

– In experimental studies, the researcher “sets” the values of xi, therefore the Xis are typically con-
sidered fixed, i.e., real vectors xi ∈ Rp.

∗ model: a function f() s.t. yi ∼ f(xi, ei∣θ) ∀i
∗ estimation: in OLS, we assume E[ei] = 0 and look for E[yi].

– In observational studies, we draw a sample {yi,xi}ni=1 from the population, therefore the xis are
typically considered random.

∗ model: f() now gives the conditional distribution: yi∣xi ∼ f(xi, ei∣θ)
∗ estimation: in OLS, we assume in addition E[ei∣xi] = 0 and look for E[yi∣xi].

In general, we will assume the context of an observational study, and so consider xi random variables.

1A common mathematical mistake is to consider y1, ...., yn as different values or “realizations” of a single random variable
y. Instead, we are dealing with a sequence of n random variables. If for example Y is a person’s height, and there is a sample of
n persons, then y1 ∶= Yi=1 is the random variable representing the height of the first person in sample, y2 ∶= Yi=2 is the random
variable representing the height of the second person in sample, etc. Each Yi of the sequence will then have a realization which
we may or may not observe.
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2 Definitions

2.1 Random variables & probability distributions

A random variable (r.v.) X is the formalization of the outcome of a random process. Mathematically,
it is a function X ∶ S ↦ E that maps a “sample space” S of all possible results of that process to a
measurable space E, often the real numbers.a It can be:

− discrete — Ex: the outcome of a coin toss: X ∶= {1 if tails,0 if heads}
− continuous — Ex: a continuous uniform r.v. X ∼ U[a, b]

Its probability distribution is a probability measure on E. It is described using:

• the probability function fX(x): the probability of occurrence of each value in E.

– for a discrete r.v., fX(x) = P(X = x) is called the probability mass function.
– for a continuous r.v., fX(x) is called the probability density function.

• the cumulative distribution function FX(x) ∶= P(X<x): the area under fX() over ]−∞, x[.

aAs a function on S, X should be written X(), defined as X(s), ∀s ∈ S. Similarly, in a statistical model with a
sample of size N , we would write ∀i ∈ N,X(i) or Xi. Typically, we will drop the notations X(s) or Xi and just write
X, leaving it implicit that it is a function defined on S.

A set of random variables {X,Y } has a joint probability distribution fXY (). Each r.v. also has an
individual or marginal probability distribution, and a conditional probability distribution, s.t.:

fXY (x, y) = fX(x) fY ∣X(y∣x) = fX ∣Y (x∣y) fY (y)

2.2 Every probability distribution has its moments...

We often focus on a few moments of a random variable’s probability distribution: its 1st, 2nd central, and 3rd

standardized moments, and when looking at multiple random variables, their 2nd central mixed moment:2

For X:

Expectation E[X] ∶= ∫ xfX(x) dx = ∫ x dFX(x) is the distribution’s center of mass or
mean.

Variance V[X] ∶= E [(X −E[X])2] = E[X2] −E [X]2

Standard deviation SD[X] ∶=
√
V[X] is a commonly used measure of variability.3

Skewness Skew[X] ∶= E[(X − µX)3]
σ3
X

is a measure of the distribution’s asymmetry.4

For a unimodal continuous r.v.:
• Skew < 0 = “skewed to the left” = “left-tailed” (fat left tail)
• Skew > 0 = “skewed to the right” = “right-tailed” (fat right tail)

2The rth moment of X’s probability distribution is E[Xr]. Its rth central moment is E[(X − µX)
r]. Its rth standardized

moment is E[(X − µX)
r]/σr

X .
3A. Gelman advises against looking at the variance, as it is in the wrong units. One should look instead at the standard

deviation, which represents the spread of the variable and is therefore in the right units.
4△! A symmetric distribution has Skew = 0, but the reverse isn’t true. E.g., a distribution with one long but thin tail, and

one short but fat tail, will have Skew = 0.
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For X,Y :

Covariance cov[X,Y ] ∶= E[(X −E[X])(Y −E[Y ])] = E[XY ] −E[X]E[Y ]

Correlation ρX,Y ∶=
cov[X,Y ]
σXσY

∈ [−1,1]

Pearson’s correlation coefficient is the normalized covariance. The covariance is not
easy to interpret as its value depends on the values of the variables. Instead, ρX,Y

normalizes the variables, s.t. its magnitude shows the strength of the linear relation.

△! Covariance and correlation are measures of linear dependence only. ρX,Y is the slope of the regression
of standardized Y on standardized X, i.e., the strength of the linear relation. A correlation of 0 would only
indicate that there is no linear relationship between the variables. They may have a nonlinear relationship;
always check using a scatterplot.

2.3 ... of which we can compute only sample equivalents

Given a sample of observations {xi, yi}ni=1, we can define sample equivalents of the moments and properties
of X and Y ’s individual and joint probability distributions. It will be important to correct for bias (from
reduced degrees of freedom) when necessary:5

Population parameter Bias-adjusted sample equivalent

Expectation µX = E[X] x̄ = 1
n ∑

n
i=1 xi

Variance σ2
X
= E [(X −E[X])2] s2x = 1

n−1 ∑
n
i=1(xi − x̄)2

Standard deviation σX sx = 1√
n−1

√
∑n

i=1(xi − x̄)2

Covariance σ2
X,Y

= E[(X −E[X])(Y −E[Y ])] s2x,y = 1
n−1 ∑

n
i=1(xi − x̄)(yi − ȳ)

2.4 Robust measures: median, interquantile range...

The mean (as a measure of central tendency) and the standard deviation (as a measure of statistical disper-
sion) are heavily influenced by the magnitude of values. An outlier can therefore change the sample mean
and sample standard deviation drastically, and these measures can also be misleading with skewed data.6

We can use instead measures that are rank-based and therefore robust to outliers, for example to measure:

5For example: by definition, an unbiased estimator of σ2 is a random variable s2 s.t. E[s2] = σ2. We can show that
E[∑n

i=1(xi − x̄)
2] = ... = (n − 1)σ2. So we must divide this sum by n − 1 for it to be an unbiased estimate of σ2. The reason

for this n − 1 bias has to do with degrees of freedom. Informally: the bias is caused by our using the mean calculated from the
sample x̄ instead of the mean of the population E[X], and manifests itself as n − 1 instead of n because we lost one degree of
freedom by calculating this sample mean (remember that every time we calculate a statistic, we lose a degree of freedom).

6In the standard deviation, the distances from the mean are squared, so large deviations are weighted more heavily, and
thus outliers can heavily influence it.
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• central tendency: the median X̃. It has a breakdown point7 of 50% (while the mean has a breakdown
point of 1

n
: a single large observation can throw it off).

• statistical dispersion

– The interquantile range (IQR) is the difference between the upper and lower quartiles: IQR[X] ∶=
QX(.75) −QX(.25) ∶= F −1X (.75) − F −1X (.25). It has a breakdown point of 25%.

– The difference between the 90th and the 10th percentile divided by the mean.

– The median absolute deviation (MAD) is the median of the absolute deviations from the
median: MAD[X] ∶=median[∣Xi − X̃ ∣]

2.5 Standardizing: z-score

A standardized variable or “z-score” is a variable that has been centered and scaled to have mean 0 and
standard deviation 1. The standardized z measures how many standard deviations the raw y is from the
mean.

Population: z = y − µ
σy

Sample: z = y − ȳ
sy

, where sy = the sample standard deviation

2.6 Independence Ô⇒ uncorrelation = orthogonality

Independence and correlation are statistical concepts, whereas orthogonality is a linear algebra concept.

• 2 random variables X and Y are independent (X ⊥⊥Y ) iff fXY (x, y) = fX(x)fY (y), ∀(x, y).

• 2 random variables X and Y are uncorrelated iff cov[X,Y ] = 0, i.e., E[XY ] = E[X]E[Y ].

• 2 vectors u and v are orthogonal iff their inner product <u, v> = 0
A space of random variables can be considered a vector space. We can therefore define an inner product
in that space, in different ways. One common choice is to define it as the covariance: <X,Y > ∶=
cov[X,Y ]. 2 r.v. X and Y are therefore orthogonal iff cov[X,Y ] = 0.

independent

=

X ⊥⊥ Y

Ô⇒ uncorrelated, orthogonal

=

cov[X,Y ] = 0

7The breakdown point of an estimator is the proportion of incorrect observations (e.g. arbitrarily large observations) it can
handle before giving an incorrect (e.g., arbitrarily large) result.
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3 Common families of probability distributions

3.1 Discrete

Many discrete probability distributions are built from the concept of Bernouilli(p) trials. A Bernouilli(p)
trial is a random success/failure experiment, where the probability of success is p.
But we can also think of a successful outcome of a Bernouilli trial as the occurrence of an event. With this
view then, for example, the number of occurrences of an event in a sequence of observations, is also the
number of successes in a sequence of n iid Bernoulli(p) trials. The table below uses interchangeably “event”
and “success”.

Name Description & Support PDF Moments

P(X=x ∣ θ) = ... E[X ∣θ],V[X ∣θ]

Bernoulli
X ∼ Ber(p)

X is the outcome of a single Bernouilli
trial with probability p of success:

X = {1 with probability p

0 with probability 1 − p

= px(1 − p)1−x E = p
V = p(1 − p)

Binomial
X ∼ B(n, p)

X is the number of successes in a se-
quence of n iid Bernoulli(p) trials.

X = 0,1, ..., n
= (n

x
)px(1 − p)n−x E = np

V = np(1 − p)

Poisson
X ∼ Pois(λ)

X is the number of events occurring in
a fixed interval, where each occurs ran-
domly and independently with a constant
mean rate λ.

X = 0,1, ...

= λxe−λ

x!

E = λ
V = λ

Negative Bino-
mial
X ∼ NB(r, p)

X is the number of successes in a se-
quence of iid Bernoulli(p) trials before a
number r of failures occurs.

X = 0,1, ...

= (x+r−1
x
)px(1 − p)r

E = pr
1−p

V = pr
(1−p)2

= E + E2

r

Note on the count distributions NB(r, p) and Pois(λ):

• X ∼ Pois(λ) is equidispersed: V[X] = E[X]. This assumption is not often realistic: count data are
usually overdispersed, i.e., their variance is higher than their mean.

• X ∼ NB(r, p) is overdispersed: V[X] > E[X]. In the case of overdispersed count data, we may therefore
want to choose the NB distribution over Poisson. 1

r
is referred to as the dispersion parameter. As

it gets smaller, the variance converges to the mean, and the negative binomial turns into a Poisson
distribution.



3.2 Continuous

Name Description & Support PDF Moments

P(X=x ∣ θ) = ... E[X ∣θ],V[X ∣θ]

Uniform
X ∼ U(a, b)

X is the outcome from a trial that is lim-
ited between two bounds:

X ∈ [a, b]
= 1

b−a

E = 1
2
(a + b)

V = 1
12
(b − a)2

Beta
X∼Beta(α,β)

X is a process limited to intervals of finite
length, such as a percentage or a propor-
tion.8 α,β > 0 are two shape parameters.

X ∈ [0,1]

= Γ(α+β)

Γ(α)Γ(β)
xα−1(1−x)β−1

E = α
α+β

V = αβ
(α+β)2(α+β+1)

Gamma9

X ∼ Γ(α,β)

α > 0 is a shape parameter and β > 0 a
rate or ‘inverse scale’ parameter.

X ∈ (0,∞)
= βα

Γ(α)
xα−1e−βx

E = α
β

V = α
β2

Chi-squared
X ∼ χ2

k

X is a sum of the squares of k indepen-
dent standard normal random variables.
The χ2 distribution is used primarily in
hypothesis testing. It is a special case of
the gamma distribution: Γ ( k

2
, 1
2
).

X ∈ (0,∞)

= 2
− k

2

Γ( k
2
)
x

k
2
−1e−

x
2

E = k
V = 2k

Logistic
X ∼
Logistic(µ,s)

X’s cumulative distribution function is the
logistic function (which appears in logis-
tic regression). It resembles the normal
distribution in shape but has heavier tails
(higher kurtosis).

X ∈ (−∞,∞)

= e
µ−x
s

s(1+eµ−x
s )2

E = µ
V = s2π2

3

Normal10

X ∼ N (µ,σ2) X ∈ (−∞,∞) = 1

σ
√

2π
e−

1
2
(
x−µ
σ
)
2 E = µ

V = σ2

Student’s T
X ∼ Tk

X ∈ (−∞,∞) =
Γ( k+1

2
)

√
kπΓ( k

2
)
(1+x2

k
)
− k+1

2 E = 0 for k > 1
V = k

k−2
for k > 2

3.3 Conjugate prior probability distributions in Bayesian inference

In Bayesian inference, if the prior and posterior probability distributions f(θ) and f(θ∣data) are in the same
family, this family is called a conjugate prior distribution for the distribution that is the likelihood function
f(x∣θ), i.e., for the sampling model. Having an conjugate prior is convenient: it gives an algebraic expression
for the posterior.

8Say we want a bell-shape distribution, defined by its mean and standard deviation, but that needs to be bounded to a
given interval — such that the normal distribution is not appropriate. Ex: test scores data are bounded to [0-100]. Should we
use a Beta distribution or a truncated normal? A. Gelman recommends using a truncated normal. I.e., using a normal, and
if we get some simulated data at 104, transform them to 100. This is sort of representing the underlying process: individuals
whose ability would truly take them above 100, but the test isn’t able to account for such ability levels, so they get 100. He
doesn’t recommend using a Beta distribution, which is very abstract and does not represent any type of underlying process.

9The Gamma distribution is a common choice to model right-skewed continuous data. It also has a specific mean-variance
relationship: the variance of the data increases with the square of the mean. It can therefore be a suitable distribution for data
whose standard deviation might be approximately proportional to the mean.

10The normal distribution is ubiquitous in statistics notably because summary statistics (differences, regression slope esti-
mates...) can be expressed mathematically as weighted averages of many independent samples with finite mean and variance,
which the Central Limit Theorem says are approximately normally distributed (they converge to a normal distribution as the
number of samples increases).



Examples:

• The Beta distribution, for a θ ∈ [0,1], is a conjugate prior for the Bernoulli, binomial, negative binomial
and geometric distributions.

Ex:

{
sampling model: Yi∣θ ∼ binomial(n, p)

prior: θ ∼ Beta(a, b)
Ô⇒ posterior: θ ∣ Yi = yi ∼ Beta(a + yi, b + n − yi)

– Generalization: The Dirichlet distribution, for a vector of probabilities that must sum to 1, is a
conjugate prior for the categorical and multinomial distributions;

• The Gamma distribution, for a rate (inverse scale) parameter, is a conjugate prior for a Poisson or
exponential distribution.

Ex:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sampling model and prior:

Yi∣θ ∼ Poisson(θ)
θ ∼ Gamma(a, b)

Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

posterior predictive distrib and posterior:

Ỹi ∣ Yi = yi ∼ NB(a +∑ yi, b + n)
θ ∣ Yi = yi ∼ Gamma(a +∑ yi, b + n)

• The Gamma distribution, for a precision (inverse variance) parameter, is a conjugate prior for a normal
distribution with known mean.

Ex:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sampling model and priors:

Yi ∣ θ, σ2 ∼ N (θ, σ2)

θ ∣ σ2 ∼ N (µ0,
σ2

κ0
)

1

σ2
∼ Gamma(ν0

2
,
ν0σ

2
0

2
)

Ô⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

posteriors:

θ ∣ yi, σ2 ∼ N (µn,
σ2

κn
)

1

σ2
∣ yi ∼ Gamma(νn

2
,
νnσ

2
n

2
)

– Generalization: The Wishart distribution, for a symmetric non-negative definite matrix, is a
conjugate prior for a multivariate normal distribution (specifically: for the inverse of its covariance
matrix).



4 Convergence theorems (Probability Theory)

Many estimators and tests statistics are made of sample averages. We are therefore interested in how
sequences of sample averages behave as a sample size n→∞. Two theorems come into play:

• Laws of Large Numbers (LLNs) say they converge in probability;
• Central Limit Theorems (CLTs) say they converge in distribution.

Convergence

• Consider a sequence of real numbers: (an)n∈N ∶= a1, a2, ..., succinctly noted an. For example,
an = 4+ 5

n
. This an has a limit, to which it converges with certainty: an ÐÐÐ→

n→∞
a∞ = 4, lim

n→∞
an = a∞

• Consider a sequence of random variables: Xn ∶= X1,X2, .... For example, a stochastic extension
of an. This Xn also has a limit: the random variable X. As Xn is stochastic, we are only almost
certain that it will converge to it, s.t. Xn converges in probability to X:a

Xn
pÐÐÐ→

n→∞
X ⇐⇒ plim

n→∞
Xn =X

• A weaker statement is convergence in distribution: Xn
dÐÐÐ→

n→∞
X ⇐⇒ lim

n→∞
FXn = FX

aFormally, a series converges iff it will eventually be within any small distance ε of its limit:
− an converges to a∞ iff ∀ε > 0,∃ N s.t. ∀n ⩾ N, ∣an − a∞∣ < ε.
− Xn converges in probability to X iff ∀ε > 0, P(∣Xn −X ∣ > ε)ÐÐÐ→

n→∞
0.

Consider a sequence of random variables (Xi)i∈N ∶= X1,X2, ..., succinctly noted Xi. Any sample average
X̄N ∶= 1

N
(X1 + ... +XN) is also a random variable. We are interested in the sequence of sample averages

(X̄n)n∈N ∶= X̄N1 , X̄N2 , ..., succinctly noted X̄n.
11 We distinguish three situations:12

a. Xi are not independent over i

b. Xi are independent over i but not identically distributed: Xi ∼ (µi, σ
2
i )

c. Xi are independent and identically distributed (iid): Xi
iid∼ (µ,σ2)

Law of Large Numbers (LLN)

a. The average X̄n of n random variables converges in probability:

X̄n −E[X̄n]
pÐÐÐ→

n→∞
0 ⇐⇒ plim

n→∞
X̄n = lim

n→∞
E[X̄n]

b. If the Xi are independent, the probability limit simplifies to: plim
n→∞

X̄n = lim
n→∞

1
n ∑iE[Xi]

c. If the Xi are iid: plim
n→∞

X̄n = lim
n→∞

1
n
nµ = µ ⇐⇒ X̄n

pÐÐÐ→
n→∞

µ

11For example: consider Xi the result of a coin flip, s.t. Xi ∶= 1 for heads and 0 for tails. The sample average Xn ∶=
1
n
(X1 + ... +Xn) is the proportion of heads in the n coin flips. Intuitively, we know it will converge most probably to 1

2
.

12This section draws heavily from Colin Cameron’s lecture notes “Asymptotic Theory for OLS”.

http://cameron.econ.ucdavis.edu/e240a/asymptotic.pdf


Central Limit Theorem (CLT)

a. The normalized average Zn of n random variables is a random variable that converges to a normal
distribution, even if the original variables are not normally distributed :

Zn ∶=
X̄n −E[X̄n]√

V[X̄n]
dÐÐÐ→

n→∞
N (0,1)

b. If the Xi are independent:
1
n ∑i (Xi −E[Xi])

1
n

√
∑iV[Xi]

dÐÐÐ→
n→∞

N (0,1)

c. If the Xi are iid:a

X̄n − µ√
σ2

n

dÐÐÐ→
n→∞

N (0,1)

To express results in terms of X̄n, we say that X̄n is asymptotically normally distributed :b

a. X̄n
a∼ N ( lim

n→∞
E[X̄n], lim

n→∞
V[X̄n])

b. X̄n
a∼ N ( lim

n→∞
1
n ∑iE[Xi], lim

n→∞
1
n2 ∑iV[Xi])

c. X̄n
a∼ N (µ, σ

2

n
)

aIn the previous example where Xi is the probability that the i-th coin flip is heads, if one flips a coin n times, the
probability of getting n

2
heads will get increasingly close to a normal distribution centered on 0 as n increases.

bThe asymptotics here correspond to a n is large enough that it’s reasonable to consider the approximation, but not
so large that the asymptotic variance goes to zero and makes the distribution degenerate.

Remarks:

• By an LLN, X̄n has a degenerate distribution as it converges to a constant, E[X̄n]. To apply the CLT,

we first scale (X̄n − E[X̄n]) by its standard deviation
√
V[X̄n] to construct a random variable with

variance 1, i.e., with a nondegenerate distribution.

• LLNs and CLTs are widely used in econometrics because extremum estimators involve averages.

– LLNs give consistency. Ex: we can rewrite β̂OLS to make two averages appear and apply LLNs:

β̂OLS = β0 + (X ′X)−1X ′e = β0 + ( 1nX
′X)−1 1

n
X ′e

= β0 + ( 1n∑
i

xix
′
i)
−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pÐÐÐ→

n→∞

finite,
≠0

1
n∑

i

xiei

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pÐÐÐ→

n→∞
0

as E[xiei] = 0



– CLTs give limit distributions, after rescaling. Ex: we can center and rescale β̂OLS to apply a CLT:

√
n(β̂OLS − β0) = ( 1n∑

i

xix
′
i)
−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pÐÐÐ→

n→∞

finite,
≠0

1√
n∑

i

xiei

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dÐÐÐ→

n→∞
N (0,...)

dÐÐÐ→
n→∞

N(0,M−1
X’XMX’ΣXM

−1
X’X)
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