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Motivation

Research questions related to the goal of sustainable development bring together social and natural systems,
and are therefore particularly conducive to interdisciplinary work. The social system part demands some
training in the social sciences, and in effect interdisciplinary researchers may have an economics background.

Applied microeconomics work in recent years has largely concerned the identification of causal relationships
between variables, such that the current dominant methods and terminology are largely fitted to that goal.
In applied work from other disciplines, one is likely to encounter alternative types of models, estimation
methods, terminology, and even ultimate goals of the statistical analysis (e.g., predictive inference vs causal
inference). If nothing else, an applied interdisciplinary researcher should be able to communicate with these
different academic disciplines. This means notably understanding what a given method does in statistical
terms, in other words: where it fits in the ‘family tree’ of statistical approaches. This will enable them
to both: choose the most appropriate method given the problem at hand (when understanding what the
method is doing, the empowered researcher need not resort only to the most common method in a given
discipline), and justify that choice in front of the different disciplinary communities.

The purpose of this document is therefore twofold:

1. To detail the typical methods of applied microeconomics, which are our reference base. This includes
defining and distinguishing common notions that may be conflated (a model, an equation, a regression,
a specification, an estimation method...);

2. To put those into context, i.e., place them in the greater ‘family tree’ or space of statistical methods,
and delineate a few other branches of that tree that may be relevant for empirical interdisciplinary
research.

Let us start by defining microeconometrics:

Econometrics = (originally) the application of statistical methods to economic data, in order to
measure the relationships of economic theory, i.e., obtain estimates that can be given a structural
interpretation.

Microeconometrics = the use of these statistical methods to study microdata pertaining to individ-
uals, households, and firms.

Ultimately, applied economics is a specific area of applied statistics.
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1 Statistical models

A model is a formal representation of a theory about a system, to ultimately describe that system.

A statistical model is a mathematical model of the data generating process (DGP)a of the sample
{yi,xi}ni=1.

− What distinguishes it from other mathematical models is that it is non-deterministic: some
variables are stochastic or “random”, they have probability distributions.b

− It is written as relationships between these random variables and some non-random variables, to
study the variation of random variables.

aFormally, it combines the set of possible observations or “sample space” S and a collection P of joint probability
distributions on S (which ideally would include the “true” probability distribution induced by the DGP; but it doesn’t
need to, we accept that are models are false).

bIndeed, the task of statistics can be described as quantifying evidence and reasoning under uncertainty.

1.1 ⊃ Microeconometrics models

All empirical investigations in microeconometrics aim to uncover important relationships to understand
microeconomic behavior. They can broadly be separated into two types of approaches, depending on the
extent to which they rely on microeconomic theory:

• Structural analysis heavily depends on economic theory. Model specifications are derived from
specifications of the economic behavior. The goal is to analyze structural relationships for interde-
pendent microeconomic variables (e.g., to estimate structural parameters that characterize individual
preferences or technological relationships).

g(y,x, e∣θ) = 0, θ = structural parameters

• Reduced-form analysis makes much less use of economic theory. The goal is to uncover associations
among variables, by using regression models.

The reduced form of a system of structural equations is the result of solving the system for the
dependent (i.e., nonlagged and endogenous) variables. This gives the dependent variables as
functions of the independent variables (exogenous variables or lags of the dependent).

y = h(x, e∣π), π = reduced-form parameters that are functions of θ

1.2 ⊃ Regression models

A regression model is a statistical model which models a dependent variable y as a function of
independent variables x: y = f(x, e∣θ).

The variables {y, x1, ..., xk} have an unknown joint distribution and covariance structure. Instead of looking
at the full joint distribution, regression models simplify the problem by focusing on the conditional dis-
tribution of y, given x. Different regression models focus on different parts of that conditional distribution
— ex: the classical linear regression model looks at its conditional mean: E[yi∣xi] = f(xi) = x′iβ; quantile
regression models at its conditional quantiles: Q[yi∣xi](α) = f(xi)...
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Regression analysis estimates the relation between y and x, specifically the distribution of values of the
relation between y and x. The output is the conditional probability distribution fy∣x.

1

Writing a regression model means that we consider that a sample {yi,xi}ni=1 is generated by the process
described by that model. We can write the model interchangeably:2

• in index notation, i.e., as a system of n equations: yi = f(xi, ei∣β), ∀i = 1, .., n

• in matrix notation: y = f(X, e∣β), where the error term e is a vector of n random variables, with an
n × n symmetric covariance matrix.

Example: The classical linear regression model assumes a linear conditional expectation function and an
additive error term:

yi = x′iβ + ei = β0 +
p

∑
j=1

βjxij + ei, ei
iid∼ (0, σ2), i = 1, ..., n

y = Xβ + e, e ∼ (0, σ2In)
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Choosing a model specification To carry out regression analysis, one must first choose a model speci-
fication: select which independent variables to include and an appropriate functional form of f().

Specification error occurs when either the functional form or the choice of independent variables poorly
represents relevant aspects of the true DGP. Though “correct specification” is, in practice, unrealistic, as we
do not observe the true DGP, we try to avoid the three basic types of misspecification:

• using an inappropriate functional form;

• including an x that is theoretically irrelevant (it has no partial effect on y) → overspecified model;

• excluding an x that is theoretically relevant (it may cause y) → underspecified model.

1.3 ⊃ Non-/Semi-/Parametric models

The specification of a statistical model can be:

• parametric or “finite-dimensional”: the model is a family of distributions that has a finite number
of parameters.3 We assume that the data come from a population that can be adequately modeled by
a probability distribution with a fixed set of parameters.

– For regression models, it means that the distribution of the error term is fully characterized.

1As opposed to the joint probability distribution of y and x, which is the domain of multivariate analysis.
2Here we have adopted the convention of Bayesian inference, where parameters are considered random variables, therefore

the DGP is written conditional on β: y = f(X, e∣β). In frequentist inference, the parameters are considered fixed, therefore we
write y = f(X, e, β).

3Recall that a statistical model is a collection P of joint probability distributions on some sample space S. We can write it
as P = {Pθ ∣θ ∈ Θ}, where Θ is the parameter space. Hence we can write a parametric model as P = {Pθ ∣θ ∈ Θ ⊆ Rk}.
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– When the parameters uniquely specify the distribution,4 we say that they are “identifiable”.

Ex: The Poisson family of distributions is parametrized by a single number λ > 0; the normal family is
parametrized by two numbers {µ,σ}.

• non-parametric: the model makes no assumptions about a parametric distribution, it determines it
from data.5 The model has parameters, but their number and nature aren’t fixed in advance.

– For regression models, it means that no parametric form is assumed for the relationship between
the dependent and the independent variables. Ex: Kriging; LOESS.

• semi-parametric: the model combines parametric and nonparametric models.
Ex: Only a few moments are specified: E[e] = 0n and V[e] = E[ee′] = Ω.

Why care about parametrization? Because what we are interested in is the class of probability distributions
(as this will be our postulated model for observed data), and the parameter describes an integral feature of
the probability distribution, s.t. knowledge about the parameter translates easily to knowledge about the
distribution.

Identification in parametric models

Identification of a parameter = its unique determination, given sufficient observations. Assuming
we had enough observations, could we determine the parameter?

The model being “well-identified”, i.e., the identification of all its parameters, is required for consistent
estimation — and thus for meaningful statistical inference. It can be obtained through the functional form
(by the parametrization of the error distribution) or from exclusion, inequality and covariance restrictions.

Example of non-identification: in the linear regression y = xβ + e, perfect collinearity between regressors
means we can’t identify β.

4I.e., the correspondence of each distribution in P with a θ is 1-1, s.t. Pθ1 = Pθ2 ⇒ θ1 = θ2.
5Nonparametric regression requires larger sample sizes than regression based on parametric models, because the data must

supply the model structure in addition to the model estimates. Nonparametric models also usually contain strong assumptions
about independencies.
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2 Data

Empirical studies can be separated into two classes, based on the type of data collected:

Study Data collection

Experimental The researcher records data about subjects while applying treatments and controlling
conditions (active participation).

Observational The researcher records data about subjects without applying a treatment (passive
participation). If the goal is to uncover characteristics of a population, they may:

• inspect the entire population: perform a census;
• inspect a subset: take sample data St from the population probability distri-
bution F (Wt ∣ θt).

2.1 Types of observational data

Observational data can be grouped into 3 categories, based on the dimensions: units (N) and time (T):

• Cross-sectional [N]: observations for several units, at one point in time;

• Time series [T]: observations for a single unit, at repeated points in time;

• Longitudinal [N × T]: observations for several units, at repeated points in time.

When the same units are observed over time, we have panel data.6 The panel can be:

– balanced: all observed units i have data across all periods t;

– unbalanced: some units have more observations than others.

Variation between units at one point in time is called between-variation, while variation within one unit
across time is called within-variation. The total variance of observed variables can be split into within- and
between-variation.

One of the strengths of longitudinal data is their potential for supporting the estimation of causal relation-
ships, as they provide a way to deal with observable and unobservable effects.

2.2 Sampling procedures

Random sampling ensures that the data probability distribution is the same as the population distribution.
If sampling isn’t random, it is biased: the data distribution differs from the population distribution.

Common random sampling procedures include:

• Simple random sampling — the assumption on which statistical inference theory is based.

• Stratified random sampling: the population is divided into L subgroups or “strata”, of N1 ≠
N2, ...,NL units. Simple random samples of sizes n1, n2, ..., nL are drawn independently.

– Proportionate stratified random sampling
Ex: in a “10% sample, stratified across subgroups”, the same fraction is applied on each subgroup.

6“Panel data” and “longitudinal data” are often used interchangeably, as most often it is the same units that are observed
over time. However keeping the distinction, as delineated in Mertens et al. (2017), can be useful.
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3 Statistical inference [under a frequentist approach]

The literature sometimes adopts a broad definition of inference which includes prediction, namely: statistical
inference as the use of a statistical model to make generalizations from particular data. A more restrictive
definition of inference instead separates it from prediction: inference uses the model to learn about the data
generating process, prediction uses the model to predict the outcomes for new data points.

If we renamed the two branches in this second set of definitions as “DGP inference” and “predictive inference”,
wouldn’t that make everyone happy?7 In any case, they both contrast with descriptive statistics, which is
solely concerned with properties of the observed data—not of a larger population. And they both first require
a model that describes the relationship between the variables in the data.

In the following sections we use the restrictive terminology that excludes prediction from inference as it is
the most common one.

Inferential statistics or statistical inference consists in inferring properties of a population,a by
calculating statistics from a sample drawn from the population.

aPopulation, DGP, and underlying probability distribution could be used interchangeably. The data observed are
of random variables, and we want to estimate parameters θ of their joint probability distribution. Making statistical
inferences = deducing properties of (conditional) probability distributions.

Statistical inference combines data and (explicit or implicit) prior assumptions,8 and generally involves:

• Estimation — 1. Estimating a value of an unknown parameter θ that characterizes the
probability distribution of some feature of interest in the population;
2. Assessing our uncertainty around θ—e.g., by estimating confidence
intervals.

• Hypothesis testing — Testing for a specific value of the unknown parameter θ.

3.1 Frequentist vs Bayesian inference

There are two main paradigms for inference, whose difference is rooted in their definition of probability.
Consider a parameter θ of unknown true value θ0, and an event θ = θ̃ (i.e., θ taking this value θ̃).

7Indeed, they need not be that separated. (1) Estimation/testing of an unknown parameter of the DGP, and predicting
the outcomes for new data points, are both generalizations from data. (2) All challenges of statistical inference (the ubiquitous
problem of generalizing from sample to population; the causal inference problem of generalizing from treatment to control
group...) can be framed as problems of prediction (for new individuals outside the sample, of future outcomes under different
assigned treatments. . . ) (Gelman et al., 2020, p.3).

8E.g., in Bayesian inference, an accurate prior (an assumption) will pull our estimates toward the true value. In frequentist
inference, assuming a particular error distribution (i.e., parametric inference techniques) lends us power.
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Frequentist approach Bayesian approach

Definition of probability P

P ∶= the frequency of occurrence of an event; P ∶= one’s belief in an event;

hence only repeatable events have P’s (ex: coin flips). hence any event, incl. non-repeatable, can have a P.

Implication regarding θ

Ô⇒ θ is fixed. We can’t assign P’s to events such as
θ⪋θ̃. We handle our uncertainty in the value of θ by
limiting error rates (over imaginary experiments).

Ô⇒ θ is a random variable. We can assign a P distri-
bution over possible values of θ, to represent our uncer-
tainty/belief in the value of θ.

Estimating θ using data

1. Collect sample data and estimate the value (point
θ̂) or range of values (confidence interval CI[θ]) of θ
that is most consistent with the data.

Result: a conclusion, summary of data, in the form of:
– a “true/false” statement from a significance test, ex-
pected to be correct ...% of the time; or
– a confidence interval, expected to cover the true value
...% of the time.
(“time” = number of possible samples from the pop.)

1. Define a P distribution over possible values of θ

2. Collect sample data and update this distribution, by
applying Bayes’ theorem to each possible value:

P(θ̃∣data) = P(data∣θ̃) ×P(θ̃)
P(data)

Result: a posterior P distribution for θ. We can com-
pute a 95% credible interval, s.t. “after seeing the data,
there is a 95% chance that this CI contains the true θ.”

Prediction

Use the point estimate θ̂ as the most likely value of θ,
and its CI.

Use the full posterior P distribution of θ̂, which allows
for taking into account the uncertainty in θ̂.

The sections below describe the ABC of statistical inference in the context of regression analysis, and under
a frequentist approach, which is the classical approach in econometrics.

3.2 Estimation

Consider a regression model y = f(x, e∣θ). Our interest is in θ̂.

3.2.1 Estimators

We have a set of observations x1, ..., xn, i.e., realizations of the sample of random variables X1, ...,Xn.

An estimand θ is a quantity of interest that we want to estimate, e.g., a parameter or some summary
of the data. Ex: the population mean µX .

An estimator θ̂n of an estimand is a sample statistic, i.e., a function of the random sample (and
therefore a random variable): Tn = t(X1, ...,Xn). Its values will vary sample to sample.
Ex: the sample mean X̄n is an estimator for the population mean µX .

An estimate is a realization of that r.v. θ̂n, calculated for our specific sample: tn = t(x1, ..., xn).

The most common estimators in microeconometrics are extremum estimators: they solve a min/max problem.

• Maximum Likelihood (ML)9

9The ML estimator is just a type of statistic, and can be conceptualized under either inference approach. From the vantage
point of Bayesian inference, ML is a special case of ‘maximum a posteriori’ estimation that assumes a uniform prior distribution
of the parameters. In frequentist inference, ML is a special case of extremum estimation, where the objective function is the
likelihood.
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We want to find the value of θ that makes the observed data most likely. The likelihood function in a
regression model is the probability density of the data given the parameters and predictors:

L(y ∣ X, θ) = f(x1, ...,xn, θ)
= f(x1, θ)...f(xn, θ)

=
n

∏
i=1

f(xi, θ)

logL(y ∣ X, θ) =
n

∑
i=1

log f(xi=xi, θ)

We compute θ̂ML ∶= argmax
θ
L(y ∣ X, θ) = argmax

θ
logL(y ∣ X, θ)

• Least Squares (LS)

The fit of a model y = g(x, e) to each data point i is measured by its residual ri ∶= yi − g(xi, β̂). We
are interested in the values of the parameters that best fit the data, i.e., that minimize the sum of the
squares of (eventually a function k() of ) the residuals.10

θ̂LS ∶= argmin
θ

n

∑
i=1

k(ri)2

When the model is linear, i.e., a linear combination of the parameters β: g(x, β) = ∑j βjhj(x), Least
Squares is a Linear Least Squares (LLS).

∗ Ordinary Least Squares (OLS)
The OLS estimator has an exact closed-form solution:

β̂OLS ∶= argmin
β

n

∑
i=1

r2i = ... = (X′X)−1X′y

In the simple case of the univariate regression model (y = α+βx+e), the estimand is βOLS = cov[x,y]
V[x]

and the estimator (its sample analog) β̂OLS =
1
n ∑i(xi−x̄)(yi−ȳ)

1
n ∑i(xi−x̄)2

. In a multivariate regression model,

the coefficient on each xk is βk
OLS =

cov[x̃k,y]
V[x̃k]

where x̃k is the residual from the regression of xk on

all the other covariates.

∗ Weighted Least Squares (WLS)
When errors are heteroscedastic, i.e., each has variance σi, OLS won’t be efficient among linear
unbiased estimators. For least squares to give us the most efficient linear unbiased estimator, we
minimize a weighted sum of squared residuals, using weights wi ∝ 1

σi
.

β̂WLS ∶= argmin
β

n

∑
i=1

wir
2
i

∗ Generalized Least Squares (GLS)

When errors are heteroscedastic or correlated, i.e., when x1, ..., xn
iid∼ f(x∣θ) doesn’t hold (the

10Indeed, let e ∶= y−ŷ be the unobserved error, L(e) the loss. We want to minimize the expected loss E [L(e)∣x]. For a squared
error loss function L(e) = e2, that function is the conditional mean: g(X,βLS) = argmin

g()
E [(y − g(x, β))2] = ... = E[y∣x]. With

a given dataset, we look for the fit g(X, β) that minimizes the mean of that function L() of the residuals; for the squared error
loss function, it means minimizing the sum of squared residuals ∑i r

2
i .
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covariance matrix Ω ∶= cov[e∣X] is not diagonal with values σ2), OLS will again be inefficient. We
minimize instead the squared Mahalanobis length11 of the residuals:

β̂GLS ∶= argmin
β

n

∑
i=1

Ð→
dM

2(ri)

When the model is a linear combination of the parameters, the GLS estimator has an exact
closed-form solution: β̂GLS = argmin

β
(y −Xβ)′Ω−1(y −Xβ) = ... = (X′Ω−1X)−1X′Ω−1y

∗ Two-Stage Least Squares (2SLS)
When regressors are correlated with the errors, we need a matrix of instruments Z s.t. E[ziei] = 0.
β̂2SLS = (X′Z(Z′Z)−1Z′X)

−1
X′Z(Z′Z)−1Z′y

• Least (symmetric) absolute error
We are interested in minimizing a different loss function: the absolute error loss, L(e) = ∣e∣. The
corresponding estimator will be more robust to outliers. The optimal fit, i.e., the least absolute
deviations fit, is the conditional median: g(X,βLSA) ∶= argmin

g()

E [∣y − g(x,β)∣] = ... =medy∣x.

• Least asymmetric absolute error

We can generalize to an asymmetric loss function: Lα(e) ∶= {
(1−α)∣e∣ if e < 0

α∣e∣ if e ≥ 0
= (α−1{e<0})×e, which

places a different penalty on overprediction and underprediction. The optimal fit is the conditional
quantile g(X,βLAA,α) ∶= argmin

g()

E [Lα(y−g(x,β))] = ... = Qy∣x(α).

Note: We have phrased all of the above in terms of the objective of finding the best fit. We could have also
phrased it with the objective of making predictions about a specific part of the outcome distribution:

Objective: fit Objective: prediction Optimal estimator/predictor

minL(e) ∶= e2 predict Ey∣x βLS ∶= argmin
β

∑i (yi − g(xi, β))
2

minL(e) ∶= ∣e∣ predict medy∣x βLSA ∶= argmin
β

∑i ∣yi − g(xi, β)∣

minLα(e) ∶= (α−1{e<0})e predict Qy∣x(α) βLAA,α ∶= argmin
β

∑iLα(yi − g(xi, β))

3.2.2 Estimator properties

See section 2 in https://clairepalandri.github.io/docs/CLRM&estimators.pdf.

3.2.3 Uncertainty in θ: computing SE[θ̂]’s and CI(θ)’s

i. The uncertainty in any estimand can be expressed by a CI95%, calculated from an estimator’s
SE

Samples are not unique. Many different samples could have been taken from the population. Any sample
statistic (sample mean, slope parameter estimates...) will vary from sample to sample, hence it is a random
variable, with a sampling probability distribution.

11The Mahalanobis distance is a measure of the distance between a point A and a distribution D. It is a multi-dimensional
generalization of the idea of measuring how many standard deviations away A is from the mean of D. It is unitless and
scale-invariant, and takes into account the correlations of the data set.

11
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We are interested in the population parameter θ, have identified an estimator θ̂ for that estimand, and have
computed its realization for our sample. As different samples would have lead to different realizations of
θ̂s, θ̂ has a sampling distribution. If the distribution is rather condensed, i.e., the standard deviation is low
relative to the estimate, it means we have high certainty about the true value of the estimand. We would
quantify this certainty by computing SD[θ̂] – and then use it to construct confidence intervals and test
statistics. As we do not observe the sampling distribution (we haven’t taken all the possible samples), we

don’t observe SD[θ̂]. However, we can estimate it, and we’ll call that estimate a “standard error” SE[θ̂].

For any estimand θ and sample statistic θ̂, estimated with n − k degrees of freedom:

• Standard Error SE[θ̂] = ŜD[θ̂] = an estimate of the standard deviation of θ̂’s distribution.

• A 95% Confidence Interval CI95%(θ) for θ = a range of values s.t. “I have a 95% confidence
level that the true θ is in this range.”

Correctly interpreting the CI This confidence interval is based on a sampling distribution; the confi-
dence refers to our uncertainty about the sampling method. The CI is therefore only correctly interpreted
in terms of repeated samples: “Imagine we drew all possible random samples of size n. This interval would
contain the true θ in 95% of the samples.”12 I.e., we believe the 95% CI contains the true value, with the
understanding that we’ll be wrong 5% of the time. Another name suggested for such intervals is “compat-
ibility intervals,” to express the idea that they give a range of parameter values that are most compatible
with our data and model/assumptions (Gelman and Greenland, 2019).

ii. Traditional approach: asymptotic theory

Consider a parameter of interest θ, and an estimator with n − k degrees of freedom θ̂.

1. Standard Error SE[θ̂]

• Example 1: θ is the population mean µx, θ̂ is the sample mean x̄.

− Population: X’s mean µx and variance σ2
x are unobserved.

− Sample: We measure the sample mean x̄. Its variance V[x̄] = σ2
x

n
is unobserved, as the

population variance σ2
x is unobserved. A reasonable estimate for σ2

x that we do observe

is the sample variance s2x.
13 We can thereby estimate V[x̄] by V̂[x̄] ∶= s2x

n
, and SD[x̄] by

SE[x̄] ∶= sx√
n
.

• Example 2: θ is a regression slope βOLS in the multivariate linear regression model.

− Population: parameter β and error variance σ2 are unobserved.

− Sample: We measure the parameter estimate β̂ ∼ (β,V[β̂]). The formula of V[β̂] is known
but its value unobserved — as it is notably a function of σ.
For simplicity, consider the simple case of normal errors: e∣X ∼ N (0, σ2I). Then V[β̂] =
σ2(X′X)−1. We can consistently estimate the population variance σ2 by the bias-adjusted

12This is a probability statement about the interval, not the population parameter. It says P(β ∈ CI ∣ β) = 95%. This is
different from saying “there is a 95% probability that the true β lies within this range”, i.e., P(β ∈ CI ∣ CI) = 95%. CIs are a
frequentist concept, and this second erroneous interpretation contradicts the frequentist interpretation of probability. In the
strict frequentist paradigm, the parameter is unobserved but it is set, so a probability statement on its value does not make
sense. The probability applies to the interval, not to the true parameter value.

13△! The standard deviation of the sample s has nothing to do with the standard error of the estimate SE[θ̂]. The first
converges to the standard deviation of the population σ as n→∞, the second to 0.
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sample variance s2 ∶= 1
n−k ∑i r

2
i .

14 We can thereby estimate V[β̂] by V̂[β̂] ∶= s2(X′X)−1 =
1

n−k ∑i r
2
i (X′X)−1, and SD[β̂] by SE[β̂] ∶=

√
1

n−k ∑i r
2
i (X′X)−1.

2. Confidence Intervals CI(θ)

We want to give a range of estimates for the unknown parameter θ. Consider the estimate θ̂−θ

SE[θ̂]
of the

centered and standardized estimate θ̂−θ

SD[θ̂]
.15

• Example 1: θ̂ ∶= x̄
x̄−µ
√

s2/n
has a T distribution with n − 1 degrees of freedom. Hence, by definition:

P(qTn−1(0.025) ≤
x̄−µ
√

s2/n
≤ qTn−1(0.975)) = 0.95

⇐⇒ P(x̄ − qTn−1(0.975) s
√
n
≤ µ ≤ x̄ − qTn−1(0.025) s

√
n
) = 0.95

where qTn−1() is the quantile function of the Tn−1 distribution. We can thus define the 95% CI:

CI95%(µ) ∶= [x̄ − qTn−1(0.975) s
√
n
; x̄ − qTn−1(0.025) s

√
n
] = [x̄ ± qTn−1(0.975) s

√
n
]

• Example 2: θ̂ ∶= β̂OLS

If errors are normally distributed, then the sampling distribution of β̂−β

SE[β̂]
is a Student’s T distri-

bution with n − k degrees of freedom. Hence, by definition:

P(qTn−k(0.025) ≤
β̂−β

SE[β̂]
≤ qTn−k(0.975)) = 0.95

⇐⇒ P(β̂ − qTn−k(0.975) SE[β̂] ≤ β ≤ β̂ − qTn−k(0.025) SE[β̂]) = 0.95

We can thus define the 95% CI:

CI95%(β) ∶= [β̂ − qTn−k(0.975) SE[β̂] ; β̂ − qTn−k(0.025) SE[β̂]] = [β̂ ± qTn−k(0.975) SE[β̂]]

The larger its degrees of freedom, the closer a T distribution gets to the standard normal distribution.
Therefore, in both examples, when n−k is sufficiently large, we can simply use the normal distribution:16

CI95%(θ) ≃ [θ̂ ± qN (0.975) SE[θ̂]] = [θ̂ ± 1.96 SE[θ̂]]

iii. Simulation approach: Bootstrap

The traditional approach relies on the assumed asymptotic sampling distribution of θ̂. This distribution
rests on asymptotic theory (which usually leads to limit normal and χ2 sampling distributions). When our
sample size is small (making this asymptotic approximation incorrect), or when analytical expressions for

the uncertainty of the particular statistic θ̂ are complicated, i.e., when conventional analytic approximations
fail, we can create an alternative sampling approximation of the finite-sample distribution of interest by
“Bootstrap”.

The Bootstrap procedure is a way to estimate the sampling distribution of the sample statistic θ̂, by re-
sampling with replacement from the current sample to generate multiple “resamples” of the same size n.

14The bias here refers to that from the reduced degrees of freedom stemming from estimating the sample means.
15The standardized estimate is θ̂−θ

SD[θ̂]
. The scaling term SD[θ̂] is unknown, therefore we replace it by its estimate SE[θ̂].

161.96 ≃ 2, therefore it is common to read that statistically significant estimates are at least two standard errors from zero.
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Supposing 100 Bootstrap resamples, we can obtain 100 estimates, i.e., realizations, of θ̂, and estimate SE[θ̂]
by their standard deviation.

Advantages and limits:

+ It does not assume any underlying distribution of the data.
+ It can be applied to any sample statistic.
+ Bootstrap CIs are asymptotically consistent (though we can’t know the true CI) and more accurate

than the traditional intervals.
– Inference still relies on an appropriately drawn sample; and assumes independent resamples. Therefore

with structured models, one must think carefully about the design of the resampling procedure (e.g.
with clusters: should we sample within or across clusters?).

– Simple but time-consuming.

3.3 Hypothesis testing

3.3.1 Statistical tests

A statistical test is a method of verifying a statistical hypothesis.

A statistical hypothesis is a hypothesis on the probability distribution of T , where T is a test-
statistic computed from the data, whose probability distribution is connected to our research question.

The general approach to conducting a statistical test consists of the following steps:

1. Write the null hypothesis H0 — the hypothesis to nullify.

2. Design a test statistic T that summarizes the data’s deviation from the data that would be expected
under H0, and that has a specific distribution under H0. Ex:

− an F -test is any test in which the test statistic has an F distribution under H0.
− a t-test is any test in which the test statistic has a Student’s T distribution under H0;

17

− a Wald Chi-squared test is any test in which the test statistic has an asymptotic χ2 distribution
under H0;

− a z-test is any test in which the test statistic has an approximately normal distribution under H0.

3. Compute the realized value of T for our data: Tobs.

4. Look whether it falls in the tails of the distribution. That would mean it is very unlikely given H0.
Therefore we can reasonably reject H0.

3.3.2 Null Hypothesis Significance Testing (NHST) paradigm

Say our goal is to statistically test the hypothesis of a relationship between y and xj , i.e., that βj ≠ 0.
Null hypothesis testing proceeds by reductio ad absurdum: a hypothesis is assumed valid if its counterclaim
is highly implausible. We’ll test whether βj = 0 is highly implausible.

For simplicity, let’s assume we are estimating a linear model by OLS, and are using the regular t-test.

17t-tests are commonly applied for test statistics that would follow a normal distribution if the value of their scaling term
(in our case of interest: the standard deviation of the coefficient estimate) were known. When the scaling term is unknown and
is replaced by an estimate based on the data (in our case of interest: the standard error of the coefficient estimate), these test
statistics follow a Student’s T distribution — under certain conditions.
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1. Write H0 we define the null hypothesis H0 ∶ β = 0

2. Design T we define the t-statistic T ∶= β̂ − β0

ŜD[β̂]
= β̂ − 0
SE[β̂]

. If errors are normal, T ∼
H0

tn−k.
18

3. Compute Tobs Tobs ∶= T (observed data)

4. Interpret we define the 2-tailed19 p-value ∶= P (observing a ∣T ∣ ≥ ∣Tobs∣ ∣H0), i.e., the probability
of observing data as extreme as that actually observed, assuming H0.

20

p-value small ⇐⇒ Tobs falls in the tail of the Student’s t-distribution
⇐⇒ observing our Tobs under H0 is highly unlikely
Ô⇒ reject H0

Ô⇒ there is a relationship between y and x.

In econometrics, the standard approach is to dichotomize the evidence using a p-
value threshold, usually the significance level α = 5%. β̂ is “statistically significant”
iff p ≤ 0.05, i.e., iff there is a less than 5% chance of observing the effect size that we
observe if there was in fact no effect.

3.3.3 Type I/II errors, size and power

A test can lead to two types of mistakes:

• Type 1 error or false positive: {− ∣H0} reject H0 when shouldn’t... (overconfident)

• Type 2 error or false negative: {+ ∣H0} don’t reject H0 when should (overcautious)

We define a test’s:

• size αT = probability of erroneously rejecting H0 ∶= P(type 1 error) = P(− ∣H0)

• power κT = probability of correctly rejecting H0 ∶= 1 −P(type 2 error) = P(− ∣H0)

Intuitively, we would like to minimize the size and maximize the power of our test. To guarantee αT ≤ 0.05,
we simply set the significance level α = 0.05. To guarantee κT ≥ 0.80, we need a sufficiently large sample zize
N , or the “Minimum Detectable Effect” will be very high.21

18This is a very strong assumption! And it means that if errors are far from normal, the result of the t-test has no
interpretation...

19We can actually use the test statistic T to carry out two different tests:
– A two-tailed test: if we want to test for the possibility of the relationship in both directions. H0∶ βj = 0,Ha∶ βj ≠ 0. Both

tails of T ’s distribution constitute therefore the “critical region”, each containing α
2

of the values. By default, statistical
packages report the two-tailed p-values.

– A one-tailed test: to test for the possibility of the relationship only in one direction. E.g.: H0∶ βj = 0,Ha∶ βj > 0. Only one
tail of T ’s distribution makes the critical region, containing α of the values. Only z- and t-tests can accommodate one-tailed
tests. F -tests, χ2-tests... cannot as their distributions are not symmetric.
20△! The p-value is often misinterpreted to be the probability of the null hypothesis, whereas it is the probability of future

data, given the null. p-value = P(obs ∣ hyp) ≠ P(hyp ∣ obs). I.e., if we want to make inferences about the actual values of
parameters, p-values and frequentist regression fail us: p-values make inferences about the probability of data, not of parameter
values. Only Bayesian methods allow us to make inferences about the actual values of the parameters, e.g., to assess the
probability of the null. To summarize: a frequentist’s conclusion (in the form of a p-value) is a statement considering that data
is random and model parameters are fixed, whereas a Bayesian’s conclusion (in the form of a credible interval) is a distribution
of parameter values that would generate the fixed data.

21In hypothesis testing in econometrics, we typically want at least 80% power and a maximum size of 5%. I.e., we accept
to incorrectly reject the null a maximum of 5% of the time, and to correctly reject it at least 80% of the time (i.e., 80% of
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Power calculations Having adequate power means that if there really is an effect, the empirical strategy
and data will enable the test to detect it. Low-powered studies will instead “miss” the effect.22 Post-
estimation, it is useful to perform a retrospective design analysis and ask: “Was my study sufficiently
powered?”, especially if we found a statistically significant non-null effect. But it must be done correctly:
△! To estimate the power one must first postulate a ‘true’ effect size, which can be thought of as that
observed in an infinitely large sample. That effect size should be determined from a literature review, not
the effect size observed in one’s study! The latter is noisy, and generally overestimated (publication bias),
and would therefore lead to overestimates of power.

3.3.4 Criticisms of the NHST and ‘statistical significance’

The 2-way binary approach to statistical hypothesis testing, based on the NHST falsificationist paradigm
(where the underlying truth isH0 “no effect” orHa “effect”) and the measured outcome is a binary statement
of ‘statistical significance’ from a p-value threshold, is heavily criticized. It is argued that:

• The underlying reality is not a simple Yes or No: in social sciences, the null hypothesis of zero effect
(i.e., of conditional independence of y and T given x) is generally implausible — there are virtually
no true zeros — and thus uninteresting. The null model is very false, so we are very likely to reject it
with enough data.
↪ Instead, we need to find alternatives to thinking in terms of conditional independence in order to

study causality. The idea would be to estimate these dependences directly, rather than modeling
the world in terms of conditional independence and estimating this structure through the testing
of null effects.

• Interpreting p-values dichotomously loses a lot of information.
↪ Instead, one could interpret p-values continuously, the strength of evidence for H0 being a con-

tinuous function of the p-value.
• Interpreting p-values dichotomously may induce selection bias: to be publishable, estimates must be
‘significant’, i.e., more than two standard errors away from 0; which selects for overestimates.

studies conducted with a given sample size will correctly reject the null). 95% > 80%: econometrics is more focused on avoiding
overconfidence than worried about being overcautious. Note also that having a high sample size n is not sufficient to have
higher statistical power — empirical studies have actually found zero or weak correlations between the two. The power of a
study depends indeed on the sample size, the true size of the effect, measurement variance, and the number of comparisons
performed. Note finally that studies of small effects, although potentially important, are unlikely to be statistically significant
because they have insufficient power to detect the magnitudes of effects.

22Lacasse et al. (2020) is a good example of this. Rephrasing their specific independent and dependent variables as generic x
and y: “Because enrollment in the trial was stopped before we had reached our proposed sample size, the trial was underpowered,
with the consequence of a wide confidence interval around the point estimate. [..] The data that were accrued could not rule
out benefit or harm from x.” As summarized in the abstract: “Our underpowered trial provides no indication that x has a
positive or negative effect on y”.
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4 Statistical inference [under a Bayesian approach]

As aforementioned, one of the main distinguishing features of Bayesian inference is the expression of all
information, including uncertainty, using probability. From this paradigm stem new possibilities at every
step of inference.

4.1 Steps of Bayesian inference

We start with the same situation: consider a population parameter of unknown true value θ, and an event
θ = θ̃ (i.e., θ taking this specific value). We are interested in estimating θ using data.

(0) Definition of θ: whereas in frequentist inference θ is considered fixed, now it is considered a random
variable. This means that at all times it has a probability distribution P which represents our state of
belief about its actual value.

(1) Prior to observing data, this P is θ’s “prior distribution” and represents our prior belief about θ.

(2) Estimation: as more evidence (data) becomes available, we use Bayes’ Theorem to update probability
statements about θ, which results in a posterior distribution:

f(θ ∣ data) =
f(θ) f(data ∣ θ)

f(data)
posterior density

prior density likelihood23

scaling factor or
“evidence”

In the canonical setup of a regression of y on x, the estimation step precisely consists of combining
the model, data, and prior through Bayes’ theorem, which is is applied to each possible value of θ to
compute a posterior distribution of θ:

− y = {y1, ...yn} the observed sampled values of the outcome variable of interest Y
− θ a parameter of y’s distribution
− α a hyperparameter of θ’s distribution

P(θ̃ ∣ y,α) =
P(θ̃, y ∣ α)
P(y ∣ α)

=
P(y ∣ θ̃, α) P(θ̃ ∣ α)

P(y ∣ α)
∝ P(y ∣ θ̃, α) P(θ̃ ∣ α)posterior

likelihood

prior

(3) Inference: we can summarize our updated belief about θ from the posterior distribution, by reporting:
− a measurement of central tendency (e.g., the mean or median);
− a 95% credible interval, s.t. “after seeing the data, there is a 95% chance that this CI contains the

true θ.”

If the goal were prediction rather than inference, we would proceed similarly up to the last step; then:

(3’) Prediction: we propagate the uncertainty in θ into the predictions of new data points {ỹ} by using
simulations: we repeatedly draw from the posterior a value of θ and compute a new data point ỹ,
thereby creating a posterior predictive distribution.

Predictive distributions of Ỹ :

• Before observing data: prior predictive distribution: P(Ỹ = ỹ) = ∫ p(ỹ∣θ) p(θ) dθ

23Note that the likelihood is now f(D∣θ) instead of f(D), as θ is no longer fixed. Or, equivalently, the (conditional)
probability model is f(y∣θ,x) instead of f(y∣x).
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• After observing data: posterior predictive distribution: P(Ỹ = ỹ ∣ Y = y) = ∫ p(ỹ∣θ, y) p(θ∣y) dθ =
∫ p(ỹ∣θ) p(θ∣y) dθ

Advantages/Distinctions of Bayesian inference w.r.t. frequentist inference

• Intuitive interpretation of findings
Because uncertainty is encoded probabilistically, our uncertainty about θ after observing the data is
represented by a distribution of values. We can effortlessly compute a 95% credible interval from the
posterior, with an intuitive interpretation: “There is a 95% chance that this CI contains the true θ.”
In comparison, the frequentist 95% confidence interval refers to our uncertainty about the sampling
method — not θ — and is thereby interpreted in terms of repeated samples: “Imagine we drew all
possible random samples of size n. This interval would contain the true θ in 95% of the samples.”
More generally, the Bayesian framework enables us to actually answer questions like “What is the
probability that θ = 4?” Whereas the Frequentist framework produces convoluted estimates: the
probability of the data assuming that θ = 4.

• Including prior information
In Bayesian inference emerges a compromise between prior information and data. More generally, it is
a way to include multiple sources of information.

• Making predictions is facilitated by the computation being optimization- simulation-based
A Bayesian will argue that one should do predictions based on the whole posterior distribution of
possible coefficient values, while prediction based on point estimates disregards all information about
how imprecise the point estimate is. Because the uncertainty about θ is encoded in a probability
distribution, we can simply propagate this uncertainty into predictions of a new data point ỹ, by using
simulations. We draw a value from θ’s posterior distribution and make a probabilistic prediction of a
new data point ỹ for this value of θ, and repeat this simulation S times. The S resulting values make
the posterior predictive distribution f(ỹ∣Y ,α) = ∫S f(ỹ∣θ) f(θ∣Y ,α) dθ.

Bayesian inference is the discipline of updating our belief about the world based on further observation of
the world. Whereas frequentist inference is focused on summarizing the information in the data. These
summaries of data have known statistical properties but have limited value as predictions.

4.2 Choosing θ’s prior distribution

We include additional information using a prior distribution

• Using an uninformative or “flat” prior (the uniform distribution) results in the posterior distribution
being equal to the product of the likelihood and a mere constant, s.t. the mode of the posterior
distribution is the ML or LS estimator.

• Weakly Informative Priors: “What you should be doing when you think you want to use noninformative
priors.” https://statmodeling.stat.columbia.edu/2009/05/24/handy_statistic/. Ex: The R
function rstanarm::stan glm() adjusts the default priors based on the scale of the variables in the
model.

• “Conjugate” prior probability distributions (for the ... distribution): the posterior distributions f(θ∣x)
are in the same family as the prior probability distribution f(θ).

• Bayesian inference is a compromise between prior and data, where each has a weight proportional to
the inverse square of its s.e. → SEBayes < both SEprior and SEdata

18

https://statmodeling.stat.columbia.edu/2009/05/24/handy_statistic/


4.3 Estimating θ’s posterior distribution

• When the likelihood has a known analytical form, we can combine it with the prior to derive the
posterior analytically.

• Most of the time, there is no such analytical form. To estimate the posterior distribution, we can
use Markov Chain Monte-Carlo (MCMC) algorithms: a family of iterative sampling algorithms24 that
sample simulation draws to form an empirical distribution which approximates the posterior:

– “Monte-Carlo” refers to the practice of estimating the properties of a distribution by examining
random samples from the distribution. Ex: instead of finding the mean of a normal distribution
by directly calculating it from the distribution’s equations, we would draw random samples from
the normal distribution and calculate the sample mean.

– “chain” means that the random samples are generated by a special sequential process: each
random sample is used as a stepping stone to generate the next random sample.
Note that this means that the draws are not independent.

– The “Markov” property of the chain is that, while each new sample depends on the one before it,
new samples do not depend on any samples before the previous one.

Ð→ Most of the time, fitting a Bayesian model = generating a set of posterior simulations (repre-
senting different possible values of the parameter vector θ), which we typically summarize using its median,
its median absolute deviation (a more robust estimator of scale than the standard deviation), and uncertainty
intervals.

Examples: We start by taking S independent samples from p(θ∣y), from which we compute a sequence which
will tend to the desired distribution as S →∞:

• To approximate the distribution of a function g(θ):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ1 ∼ p(θ∣y) Ð→ compute g (θ1)
...

θS ∼ p(θ∣y) Ð→ compute g (θS)
The sequence

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g (θ1)
...

g (θS)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

ÐÐÐ→
S→∞

p(g(θ) ∣ y)

• To approximate P(θ1 > θ2∣y):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ11 ∼ p(θ1∣y) and θ12 ∼ p(θ2∣y)
...

θS1 ∼ p(θ1∣y) and θS2 ∼ p(θ2∣y)
Then

1

S
∑
s

1{θs1 > θs2}

• To approximate the posterior predictive density P(Ỹ ∣Y = y):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ1 ∼ p(θ1∣y) Ð→ compute ỹ1 ∼ p (ỹ∣θ1)
...

θS ∼ p(θ1∣y) Ð→ compute ỹS ∼ p (ỹ∣θS)
The sequence

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ỹ1

...

ỹS

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

ÐÐÐ→
S→∞

p (ỹ∣y)

24For example, Stan uses as inference algorithms two MCMC algorithms: the Hamiltonian Monte Carlo algorithm and its
adaptive variant the “no-U-turn sampler”.
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5 Prediction

6 Model comparison

Learning from data has generally one of two ultimate objectives: inference or prediction. Model comparison
should proceed in line with the objective. After a brief paragraph on nested model discrimination, this
section focuses on model comparison for prediction, our objective will therefore be predictive performance.25

Much of this section is taken from Gelman et al. (2014).

6.1 Comparing nested models: F tests

If two models are nested, i.e., one represents a special case of the other, we can easily discriminate between
them using a standard hypothesis test of the parametric restrictions on the nested one.

The key questions are: (1) Is the improvement in fit large enough to justify the additional difficulty in fitting,
and in a Bayesian context: (2) Is the prior distribution on the additional parameters reasonable?

6.2 Comparing non-nested models: IC, CV

We want to know which model gives the best predictions of new data generated from the true DGP. Ideally,
we would measure the model’s out-of-sample predictive accuracy for such new data produced from the true
DGP. After describing the quantity we would like to measure, the section below describes methods for
estimating an approximation of it, given our data.

There are different ways of defining a model’s predictive accuracy or error:

• If one is predicting a point, predictive accuracy can be defined using an error measure, such as the
absolute error or the squared error. Individual errors are aggregated and averaged to obtain a summary
measure of predictive accuracy, such as the Mean Absolute Error (MAE) or the Root Mean Squared
Error (RMSE):26

MAE ∶= 1
N ∑

i

∣ ŷi − yi ∣ , RMSE =
√
MSE ∶=

√
1
N ∑

i

(ŷi − yi)2

• A more general27 summary is the log likelihood or log predictive density (LPD).
For any data y = y1, ..., ym produced from the true DGP, i.e., taken from the unknown data distribution
f , LPD(y) ∶= lnP(y∣θ) = ln∏iP(yi∣θ).

Therefore for out-of-sample data:

25In classical econometrics focused on inference, especially when the goal is causal inference, the research design drives the
model specification such that there isn’t so much need for model comparison and selection.

26The RMSE is the standard deviation of the residuals, i.e., of the unexplained variation. It is an absolute measure of fit of
the model to the data. (Whereas R2 is a relative measure of fit. Note that one should absolutely not select a model based on
R2, as this would favor overfitting.) Note that: (1) RMSE is scale-dependent (it has the same unit as y), therefore it can only
be compared across models in the same units; (2) compared to the MAE, the RMSE penalizes large errors more.

27It is proportional to the MSE if the model is normal.
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If inference for θ is summarized by a point estimate
θ̂(y)

If inference for θ is summarized by a posterior
distribution ppost,θ()

▷ For a new data point ỹi ∼ f :

LPD(ỹi) = lnP(ỹi∣θ̂) LPD(ỹi) = lnppost,y(ỹi) ∶= ∫ P(ỹi∣θ)ppost,θ(θ)dθ

▷ As new data points are themselves unknown, the expectation:

ELPD ∶= Ef [LPD(ỹi)] = Ef [ lnP(ỹi∣θ̂)] ELPD ∶= Ef [LPD(ỹi)] = Ef [ lnppost,y (ỹi) ]

In practice, f and θ are unknown, so we can’t compute ELPD. We will try to approximate it, using
existing data (hence knowing that any method will be correct at best only in expectation...).

– Adjusted within-sample predictive accuracy: a natural estimate of the expected log pre-
dictive density for new data is the log predictive density for existing data. Information criteria
such as AIC and WAIC give approximately unbiased estimates of ELPD by correcting for how
much the fitting of k parameters increases predictive accuracy, by chance alone. These are scoring
methods from information theory.

– Cross-validation: the model is fit to a training set, then the fit evaluated on a holdout set.

Both methods are based on adjusting the log predictive density of the observed data by subtracting an
approximate bias correction. The measures differ in their starting points (how they measure the log
predictive density) and their adjustments. Asymptotically, AIC is equal to LOO-CV computed using
ML estimation, and Bayesian LOO-CV is equal to WAIC.

Information Criteria (IC)

Goal: we want the best model fit (maximized likelihood), but we penalize model complexity (to not overfit
the data). Most IC are expressed on the deviance scale; the model with smallest IC is preferred.28

Let k be the number of parameters, n the sample size.

• Akaike information criterion (AIC)

– starting point: the log predictive density, conditional on a point estimate: ln L̂ ∶= lnP(y∣θ̂);
– adjustment for overfitting: uses the simplest bias correction, based on the asymptotic normal pos-

terior distribution, for which29 simply subtracting k corrects for the number of parameters:

AIC ∶= −2 (ÊLPDAIC) = −2 ( ln L̂ − k) = −2 ln L̂ + 2k

AICc is the AIC corrected for small samples: AICc = −2 ln L̂ + 2k
n

n − k − 1
ÐÐÐ→
n→+∞

AIC

Limit: when we go beyond linear models with flat priors, e.g., models with hierarchical structures or
informative priors, the number of effective parameters isn’t k so we can’t simply substract k.

• Watanabe-Akaike information criterion (WAIC)

– starting point: the log predictive density, averaging over the posterior distribution ppost(θ) = P(θ∣y)
(i.e., a fully Bayesian approach);

– adjustment for overfitting: corrects for the effective number of parameters.

28For models with different fixed effects, residual likelihoods are not comparable. Therefore if such models were fitted using
restricted maximum likelihood (REML), IC cannot be used to select between them. To use IC, the models should be fitted
using maximum likelihood.

29This is also true in the special case of a normal linear model with a uniform prior distribution.
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Cross-validation (CV)

Cross-validation consists in partitioning the data into a training set yt and a validation set yv, fitting the
model to the training set, and evaluating this predictive accuracy (fit) using the validation set. It is based on
the log predictive density, but can use any starting point (i.e., either averaging over the posterior distribution

ppost(θ) or conditioning on a point estimate θ̂).

In Bayesian CV, fitting the model to yt yields a posterior distribution for θ: ppost(θ) ∶= P(θ∣yt). We assume
we can summarize it by S simulation draws θ1, ..., θS . We can then compute the log predictive density for
yv as: LPD(yv) ∶= lnP(yv ∣θ“post”) ∶= 1

S ∑
S
s=1P(yv ∣θs).

The CV process is repeated using different partitions, and the resulting log predictive densities are averaged
into a single estimate of out-of-sample predictive accuracy.

• K-fold CV
The data are randomly partitioned into K equal-sized sets. K = 10 is commonly used. The CV process
is repeated K times, each time using one subsample for validation — such that each observation is
used for validation exactly once — and the K results are averaged into one estimate:

LPDK-CV =
K

∑
k=1

ln( 1
S

S

∑
s=1

P(yk ∣θs))

• ‘Leave-one-out’ CV = n-fold CV
In the extreme case of n partitions, each validation set represents a single data point:

LPDLOO-CV =
n

∑
i=1

ln( 1
S

S

∑
s=1

P(yi∣θs))

In any CV process, each prediction is conditioned on n− v data points instead of n, which causes underesti-
mation of the predictive fit. We can correct for this bias by estimating how much better predictions would
be obtained if conditioning on n data points (Gelman et al., 2014).

Conclusion Neither cross-validation nor information criteria are perfect. AIC does not work in settings
with strong prior information, WAIC relies on a data partition unamenable to structured models such as for
spatial or network data, cross-validation is computationally expensive as getting a stable estimate requires
many data partitions and fits. Gelman et al. (2014)’s preferred choice is “cross-validation, with WAIC as
a fast and computationally convenient alternative. WAIC is fully Bayesian (using the posterior distribution
rather than a point estimate) [...]. A useful goal of future research would be a bridge between WAIC and
cross-validation with much of the speed of the former and robustness of the latter.”

TO ADD: Model Shrinkage Methods, and other methods to deal with highly correlated pre-
dictors

• LASSO (Least Absolute Shrinkage and Selection Operator)

• PCA
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7 Other branches of statistical modeling

7.1 Statistical Inference using agent-based models (ABMs)

Agent-Based Models are computational modelsa that simulate the actions and interactions of au-
tonomous agents within a system, to assess their effects on the system as a whole. The goal is to
re-create and predict the emergenceb of higher-level system properties from simple agent-level behav-
iors, taking a “bottom-up” approach.

ABMs are generally composed of 3 elements:
1. many agents with assigned attributes;
2. simple rules about: their individual decision-making process, how they interact, how they learn

and adapt—these rules can be deterministic or probabilistic;
3. an environment.

aComputational models are mathematical models that study the behavior of a system by computer simulation. The
system studied is often a complex nonlinear system for which simple analytical solutions are not available. Experi-
mentation is therefore done by modifying the model’s parameters, and comparing outcomes. Examples include weather
forecasting models, flight simulator models, neural network models, and ABMs.

bThe process of emergence can be expressed as “the whole is greater than the sum of its parts”.

Goal of ABMs ABMs allow us to observe how the behaviors of individual agents affect the system as a
whole and if any emergent structure develops within the system. They show how small-scale changes can
affect large-scale outcomes within the system.

At a formal level, an ABM is just a statistical model. But agent-based modeling differs from other types
of statistical modeling because it describes only the behavior of the agents in a system, rather than global
properties of the system.

Use in different fields

• In economics: ABMs can describe the microeconomic actions of adaptive agents, which give rise to
emergent behavior in the form of macroeconomic structures; which, in turn, influence agent decisions.
Ex: we can represent the economy as a complex system, with crashes and booms that emerge from
non-linear responses to small changes.

• In ecology: ABMs are often called individual-based models (IBMs), and are used to study population
dynamics, plant-animal interactions...

• In epidemiology: epidemiological ABMs now complement traditional compartmental models (such
as the deterministic SIR — Susceptible/Infectious/Recovered — model) which they have tended to
surpass in terms of prediction accuracy to model the spread of epidemics.

Statistical inference

1. Model validation and selection, uncertainty quantification, and fitting ABMs to data: There does not
seem to be (yet) formal guidelines and procedures from the statistical literature, for: fitting ABMs to
data, for making quantified statements of uncertainty about the outputs, e.g., calculating confidence
intervals on predictions, nor for testing whether a specific parameter (rule) is needed in an ABM. See
Banks and Hooten (2021); Heard et al. (2015).

2. Statistical inference
Because of the variety of input rules and the complexity of outputs, the likelihood function of an ABM
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is generally intractable. One must hence perform likelihood-free inference. Heard et al. (2015) suggest
that two main tools allow that: emulators and approximate Bayesian computation (ABC).
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Key ideas

Statistics is about reasoning under uncertainty, and therefore probability distributions. Inferential statis-
tics proceeds by learning from data. It asks: Given sample data, what can we infer about the population?

In microeconometrics, inference is usually conducted under a frequentist approach:

Steps Options

1. Choose & write a model, the one we think is closest to the true and
unobserved DGP.

(linear regression model w.
normal errors, logistic regres-
sion model, SEM...)

⋆ Bring in data ⋆

2. Estimate the model. I.e., in regression analysis, estimate the condi-
tional distribution y∣x, σ. When the specification is parametric, it means
estimating parameters.

(OLS, 2SLS, ML,...)

a. estimation Ô⇒ “β̂ = ...,CI95%(β) = [..., ...]”

b. hypothesis testing Ô⇒ “β̂ is/isn’t statistically significant”

3. Validate & compare the model.

In frequentist statistics, we trust that the results given by these statistical tools (estimators, tests...) give us
relevant indications about the population, because of the tools’ asymptotic properties — which stem from
laws of large numbers (LLNs) and central limit theorems (CLTs).
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A A small library of regression models

The textbook Classical Linear Regression Model (CLRM) can be generalized in various dimentions, such as:

− the power of the independent variables (→ polynomial regression);
− the link function relating the linear predictor xβ to the outcome E[y∣x] (→ generalized linear model);
− the number of levels in the data (→ multilevel model)...

This section presents some of the models resulting from these generalizations.

Notation Recall that a statistical model is the combination of a sample space and a collection of joint
probability distributions on that space; the goal being to represent the specific distribution induced by the
DGP. Rather than look at the full joint distribution, regression models simplify the problem and focus on
the conditional distribution of y∣x.30 All regression models are therefore first conditional distributions, and
can be written as such. Based on the properties of each distribution, we can then also write them in a
conditional mean +/× error form.

A.1 Expanding from the CLRM

• Classical Linear Regression Model31

yi∣xi ∼ F(x′iβ,σ2)

⇐⇒ yi = β0 + β1xi1 + ... + βkxik + ei, ei
iid∼ F(0, σ2)

⇐⇒ yi = E[yi∣xi] + ei, E[yi∣xi] = β0 + β1xi1 + ... + βkxik, ei
iid∼ F(0, σ2)

• Polynomial Regression

– Ex: LOESS (locally estimated scatterplot smoothing) is a nonparametric regression algorithm, in
which E[yi∣xi] at each data point i is estimated using a weighted low-degree polynomial regression
model that gives higher weights to the neighboring points (along x).

E[yi∣xi] = β0 + β1xi + β2x
2
i + ... + βpx

p
i , ei

iid∼ F(0, σ2)

• Generalized linear model (GLM)

GLMs are often used to predict outcomes of bounded or discrete form (outcomes that cannot be fit
well with normally distributed additive errors). A GLM consists of three elements: a probability
distribution F() from the exponential family we assume the outcome to be generated from,32 a linear
predictor x′iβ, and an invertible link function g() that relates E[yi∣xi] to x′iβ.

– Ex: the linear regression model is a GLM with normal outcome data and identity link.
– Ex: the logistic regression model is a GLM with Bernouilli outcome data and logit link.

30For simplicity, we assume we adopt a frequentist approach, therefore we need not write distributions of y as conditional
on θ, as θ is fixed. If we adopted a Bayesian approach, we would make it explicit that distributions of y are conditional on θ.

31A note about the interpretation of regression coefficient estimates β̂: They should be interpreted as “effects” only in causal
inference. Otherwise, the safest interpretation is as a comparison, using the word “differences” rather than the words “effects”
or “changes”. E.g., “the average difference in y, comparing two individuals that differ in x by one unit, is β̂ = 0.29” or “adding
1 unit to x corresponds to an increase of β̂ = 0.29 in an individual’s predicted y”.

32Distributions in the exponential family have a probability density (or mass) function fθ(y) whose form make them highly
tractable mathematically. In particular, we can obtain general expressions for their mean and variance in terms of their canonical
parameters θ using differentiation. See Wood (2017), section 3.1, on how this allows to develop a general method for fitting a
GLM by maximum likelihood, as θ is ultimately determined by the regression parameters.
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– Ex: the Poisson regression model is a GLM with Poisson outcome data and log link.

yi∣xi ∼ FExpFamily(...), g(E[yi∣xi]) = β0 + β1xi1 + ... + βkxik

• Generalized additive model (GAM)

GAMs generalize further to allow for g(E[yi∣xi]) to depend linearly on smooth (nonlinear) functions of
some predictors. Relationships with xi1, ..., xik are represented via smooth functions h1(.), ...., hk(.), lj(., .), ...,
which allow to estimate flexible non-linear relationships and interaction effects. GAMs can thereby be
considered semi-parametric models. They have an additional aspect: they are fitted using penalized
estimation. A penalty for the size of the coefficients for the smooth functions is added to the objective
function (whether the likelihood or a loss function), to prevent overfitting the data.

yi∣xi ∼ FExpFamily(...), g(E[yi∣xi]) = β0 + h1(xi1) + ... + hk(xik) + l(xi1, xi4)

• Multilevel or “hierarchical” models

The lowest-level model is a regression, higher-level models model coefficients of the model immediately
below them. These higher-level models can be regressions or distributions. All models are fitted
simultaneously.

– Ex: 2-level, varying-intercept model; the group-level model is a regression:

⎧⎪⎪⎨⎪⎪⎩

yi ∼ F (αj[i] + βxi, σ2
y) ∀i = 1, ..., n, j = 1, ..., J

αj ∼ F (γ0 + γ1wj , σ2
α) ∀j = 1, ..., J

– Ex: 2-level, varying-intercept & slope model; the group-level models are distributions:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yi ∼ F (αj[i] + βj[i]xi, σ2
y) ∀i = 1, ..., n, j = 1, ..., J

αj ∼ N (µα, σ
2
α) ∀j = 1, ..., J

βj ∼ Γ (γβ , δβ) ∀j = 1, ..., J

• Incomplete data models

– Missing data. For some problems, we can set up a model specifically to handle the missingness
mechanism. Ex censored data: extensions of ML / Bayesian regression include the censoring into
the likelihood.

– Measurement error in the predictors x:33 we observe x∗ = x + η. If we can estimate the variance
of the measurement errors, we can either just apply a bias correction on the raw estimate from
the regression of y on x∗, or directly fit the full “simultaneous-equation model” using a marginal
likelihood or Bayesian approach. Same maths as in IV.

A.2 Generalized linear models (GLMs)

Generalized linear models (GLMs) are often used to predict outcomes of limited form, i.e., that are categorical
or constrained to fall in a certain range. With such data, linear regression estimation is not appropriate
as it does not take into account the constraint on values of the dependent variable. The strategy is to
transform the limited y into a continuous, real-valued variable y′ ∶= g(y) ∈ (−∞,∞), that we can then model
as y′ = xβ + ε, using a link function g().

33Measurement error in y does not pose a problem besides imprecision, as it just goes into the error term. It is measurement
error in x that poses a problem: estimated regression coefficients can be attenuated (i.e., it doesn’t just increase standard errors,
but can drive the coefficient down).
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A GLM consists of three elements: a probability distribution F() from the exponential family for the
outcome, a linear predictor x′iβ, and an invertible link function g() that relates E[yi∣xi] to x′iβ:

yi∣xi ∼ FExpFamily(...), g(E[yi∣xi]) = β0 + β1xi1 + ... + βkxik

Limited y Appropriate regression models

binary: y ∈ {0,1} probit regression, logit regression

count: y ∈ {0,1,2,3, ...} Poisson regression, negative binomial regression

interval: y ∈ [0,1] fractional response

censored censored regression, e.g., Tobit

A.2.1 Binary outcome models

The outcome variable is binary, i.e., it follows a Bernoulli distribution:

yi∣xi ∼ Ber(π) ∶= {1 with probability π

0 with probability 1 − π

The conditional mean E[yi∣xi] is equal to the conditional probability π ∶= P(yi=1∣xi).34 A regression model
is therefore formed by expressing π as a function of xi and β;35 and we look for a link function g() that
maps the [0,1] interval to the real line.

yi∣xi ∼ Ber(πi), πi = E[yi∣xi] = g−1(xi, β)

• Linear probability model
yi∣xi ∼ F(πi), πi = x′iβ

This model is probably the first one that comes to mind. It is not appropriate, as the identity link is
not a CDF, it will not constrain the predicted values to be in [0,1], since the predictor x′iβ can take any
real value. Yet, it is still frequently preferred to Logit or Probit, on grounds that it is computationally
simpler, the estimated marginal effects are easier to interpret, and are usually very similar anyway,
especially with a large sample size.
However, Horrace and Oaxaca (2006) show that in almost all circumstances, the LPM yields biased and,
most importantly, inconsistent estimates. I.e., the LPM gives the wrong answer, with almost certainty,
even with an infinitely large sample: “consistency seems to be an exceedingly rare occurrence as one
would have to accept extraordinary restrictions on the joint distribution of the regressors. Therefore,
OLS is frequently a biased estimator and almost always an inconsistent estimator of the LPM.”

• Logit model = Logistic regression model

yi∣xi ∼ Ber(πi)

πi = logit−1(x′iβ) ∶=
ex
′

iβ

1 + ex′iβ
⇐⇒ logit(πi) = x′iβ

We choose as link function g() the logit logit(.) ∶= ln ( .
1−.
) (i.e., we choose as g−1() the CDF of the

logistic distribution: logit−1()), which maps [0,1] to [−∞,∞]. We transform the probability outcome

34As E[y∣x] = 1 ×P(y=1∣x) + 0 ×P(y=0∣x) = P(y=1∣x).
35The function g−1() should be a cumulative distribution function, to ensure that 0 ≤ πi ≤ 1.
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using this logit or “log-odds” transformation. As this new outcome need not be in [0,1], we can model
it as a linear function of the covariates.

Interpretation of each coefficient β̂k (keeping all the other predictors fixed):

– logit scale [−∞,∞] “a 1-unit difference in x corresponds to a β̂k-unit difference in log-odds(y=1)”

– odds36 scale [0,∞] “a 1-unit difference in x corresponds to a eβ̂k multiplicative difference in odds(y=1)”

– probability scale [0,1] “a 1-unit difference in x corresponds to a β̂k
4
-unit maximum37 difference in P(y=1)”

• Probit model
yi∣xi ∼ Ber(πi)

πi = probit−1(x′iβ) ∶= ∫
X′iβ

−∞
ϕ(t)dt ⇐⇒ probit(πi) = x′iβ

We choose as link function g() the probit, which is the quantile function of the standard normal
distribution (i.e., we choose as g−1() the CDF of the normal distribution: probit−1()), which maps
[0,1] to [−∞,∞].

We cannot interpret each coefficient β̂k directly, we need to compute the marginal effects.

Note: As a rule of thumb, probit regression coefficients are roughly equal to logistic regression coefficients
divided by 1.6.

Estimation by Maximum Likelihood, as the distribution of the data y∣X must be the Bernouilli. The
conditional density of each observation is: f(yi∣xi) = πyi

i (1 − πi)(1−yi). Given independence over i, the
(log-)likelihood of the data is then the (log-)likelihood for n independent Bernoulli observations:

θ̂ML = argmax
θ

logL(y∣X,θ) = argmax
θ

log
n

∏
i=1

πyi

i (1 − πi)1−yi

= argmax
θ

n

∑
i=1

yi ln(πi) + (1 − yi) ln (1 − πi)

= argmax
β

n

∑
i=1

yi ln (g−1(x′iβ)) + (1 − yi) ln (1 − g−1(x′iβ))

△! Don’t fit logistic models for binary outcomes when the underlying continuous variable is available. For
inference or prediction, it is much more efficient to model the underlying continuous variable and then map
it back to the probability of the discrete outcome. Ex:
− basketball game: model the expected score differential, and then map it to P(winning).
− elections: predict vote differential and then map that to P(winning).
− health: model change in blood pressure, and then convert it to the binary disease state P(hypertension).

A.2.2 Count data models

yi ∈ {0,1,2, ...}: number of occurrences of an event. Ex: number of children in a household, number of doctor
visits per year, number of new cases of an infectious disease per day...

36The odds of success are defined as the ratio of the probability of success π over the probability of failure. Here, where
“success” is y=1, the odds of y=1 are π

1−π
to 1.

37△! The logistic function logit−1() is nonlinear, so the expected difference in P(y = 1) from a given difference in x is not a
constant along x. We must choose where to evaluate changes, if we want to interpret them on the probability scale. The slope
of the logistic regression curve is steepest at its halfway point (logit−1() = 0.5), where it equals β/4. I.e., the largest change in
π from a 1-unit change in x is β/4.
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• Poisson regression model

The Poisson distribution Pois(λ) models the number of events occurring in a fixed interval (of time
or space), when these events occur at random, independently in time, with the constant mean rate λ.

Its probability mass function is therefore P(y∣λ) = e−λλy

y!
, which further implies E[y] = V[y] = λ. The

general Poisson regression model is:

yi∣xi ∼ Pois(λi), λi = g−1(x′iβ)

A common choice of link function g() is ln(). The Poisson regression model is therefore fitted as a

log-linear regression with Poisson error distribution: yi∣xi ∼ Pois(ex
′

iβ).

Estimation by Maximum Likelihood:

β̂ML = argmax
β

logL(y∣X,β) = argmax
β

log
n

∏
i=1

P(yi∣xi, β)

= argmax
β

n

∑
i=1

log
e−e

x′iβ(ex
′

iβ)yi

yi!

= argmax
β

n

∑
i=1

[−ex
′

iβ + yi(x′iβ) − ln(yi!)]

A limitation of the Poisson model is that it implies equi-dispersion, i.e., that the variance is equal to
the mean: V[yi∣xi] = E[yi∣xi], whereas we often see overdispersion in the data (ex: a few traders will
do many trades, many traders will do a few). To accomodate overdispersion, some softwares (e.g., R)
have packages that permit an “adjusted” Poisson regression, or we can turn to the negative binomial
distribution.

• Negative binomial model

The negative binomial distribution NB(p, r) models the number of successes in a sequence of iid
Bernoulli(p) trials before r failures occur. Its probability mass function is therefore P(y ∣ p, r) =
(y+r−1

y
) py (1 − p)r = Γ(y+r)

y! Γ(r)
py (1 − p)r.

The negative binomial distribution allows the variance to be larger than the mean, which makes it a
useful overdispersed alternative to the Poisson.

In a regression framework, it is more intuitive to specify the distribution in terms of its mean µ = pr
1−p

and r. r is called the precision parameter or reciprocal overdispersion parameter. The distribution
converges to Poisson as r → ∞, i.e., as the overdispersion 1

r
→ 0. We rewrite the probability mass

function as P(y ∣ µ, r) = Γ(y+r)
y! Γ(r)

( µ
r+µ
)y ( r

r+µ
)r.

Using as link function g() the usual logarithmic transformation ln(), the NB regression model is:

yi∣xi ∼ NB (µi, r) , µi = ex
′

iβ

Estimation by Maximum Likelihood:

θ̂ML ∶= argmax
θ

logL(y∣X,θ) = argmax
θ

log
n

∏
i=1

P(yi∣xi, θ)

= argmax
θ

n

∑
i=1

log(Γ(yi + r)
yi! Γ(r)

( µi

r + µi
)
yi

( r

r + µi
)
r

)

= argmax
β,r

n

∑
i=1

log
⎛
⎝
Γ(yi + r)
yi! Γ(r)

( ex
′

iβ

r + ex′iβ
)
yi

( r

r + ex′iβ
)
r⎞
⎠
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Interpretation of each coefficient β̂k (keeping all the other predictors fixed):

– log scale [−∞,∞] “a 1-unit difference in x corresponds to a β̂k-unit difference in log(µ).”

– incidence rate ratio scale [0,∞] “a 1-unit difference in x corresponds to a eβ̂k multiplicative difference in µ.”

Example: yi ∶= the number of new cases of an infectious disease on day ti. In the early stages of an epidemic,
the rate of new cases can increase exponentially, s.t. E[yi∣xi] = γ exp(δ.ti) is a suitable model. Using a log
link turns the model into a GLM: log(E[yi∣xi]) = log(γ) + δ.ti. The complete specification of a reasonable
GLM consists therefore the log link, the linear predictor β0 + β1.ti, and a Poisson or negative binomial
outcome distribution.

A.3 Generalized additive models (GAMs)

We want to capture relationships between the response and predictors that are potentially non-linear. GAMs
let g(E[yi∣xi]) depend on smooth (nonlinear) functions h1(), h2(), ... of the predictors, where each such
smooth term is made of a sum of “basis functions”, as is described further below. The overall GAM is
thereby a linear model in transformed variables, such that fitting can proceed with similar techniques as for
linear models. These smooths enable to capture non-linear relationships and interaction effects with a high
degree of flexibility; GAMs are a form of semi-parametric models.

Specification We consider a simple GAM with parametric terms Xpθ, a univariate smooth term h(x1),
and a bivariate smooth term l(x2,x3), and describe the forms that the smooths can take:

yi∣xi ∼ FExpFamily(...), g(E[yi∣xi]) = Xipθ + h(xi1) + l(xi2, xi3)

• Univariate smooth h()
h(x) is made of a linear basis expansion in x, i.e., of a sum of “basis functions” bj()s, thus named

for they belong to a common space of functions or “basis”: h(x) = ∑k
j=1 bj(x)βj . Examples of bases

include:

– Polynomial basis
b1(x) = 1, b2(x) = x, b3(x) = x2, ... Ô⇒ h(x) = β1 + β2x + β3x

2 + ...

– Piecewise bases
The range of x is divided into multiple intervals at “knots” x∗1, ..., x

∗
k, and piecewise functions

are fit on the intervals. The number of knots k, sometimes called the dimension of the piecewise
function, controls the degree of flexibility. Examples of basis functions {bj}k1 :

∗ Piecewise constant basis
b1(x) = 1{x < x∗1}, b2(x) = 1{x∗1 ≤ x < x∗2}, ..., bk(x) = 1{x∗k−1 ≤ x}. The resulting h() is a
step function.

∗ Piecewise linear basis
Piecewise linear functions are fit on the intervals.

b1(x) = {
(x∗2 − x)/(x∗2 − x∗1) if x < x∗2
0 otherwise

... x∗1 x∗2 x∗k
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bj(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(x − x∗j−1)/(x∗j − x∗j−1) if x∗j−1 < x < x∗j
(x∗j+1 − x)/(x∗j+1 − x∗j ) if x∗j < x < x∗j+1
0 otherwise

...

x∗j−1 x∗j x∗j+1

bk(x) = {
0 if x ≤ x∗k−1
(x − x∗k−1)/(x∗k − x∗k−1) otherwise

x∗k−1 x∗k

∗ Piecewise polynomial basis with continuous derivatives = Spline basis
A spline is a piecewise polynomial function of degree m, with the imposed constraint of m−1
continuous derivatives, to ensure that the pieces join smoothly. Examples:

· A linear spline is a piecewise linear polynomial continuous at each knot. It has 2(k+1)−k =
k + 2 degrees of freedom.

· A cubic spline is a piecewise cubic polynomial with continuous 1st and 2nd derivatives at
each knot.38 The set of cubic splines with fixed knots is a vector space with 4(k+1)−3k =
k + 4 degrees of freedom. Ex: a cubic spline with a single knot at a point c:

yi =
⎧⎪⎪⎨⎪⎪⎩

β01 + β11xi + β21x
2
i + β31x

3
i + ϵi if xi < c

β02 + β12xi + β22x
2
i + β32x

3
i + ϵi if xi ≥ c

Note: Polynomials tends to be erratic near the boundaries. To prevent that behavior, one can
use a “natural” or “restricted” spline, which further imposes linearity beyond the boundary
knots. E.g., a natural cubic spline sets the cubic and quadratic terms there to 0. This frees
up 4 degrees of freedom (2 at each end of the curve), moving the total from k + 4 to k.

Knot selection or penalization Piecewise bases require choosing the number and location of
knots. There is a trade-off between a high enough number of knots to capture non-linearities, but
not so many that we’re overfitting. How to select them? One could place knots either at uniform
quantiles of the data, or in regions of the support where more variation in the relationship is
expected, and compare different numbers of knots by cross-validation... An alternative method
to avoid the knot selection problem entirely is penalization: we set a very high number of knots
k, but add to the objective function (whether the likelihood or a loss function) a penalty for the
‘wiggliness’ or curvature of the smooth, to prevent overfitting the data. The objective function
becomes:

∗ in maximum likelihood estimation, a penalized likelihood: lp(β) ∶= l(β) − penalty

∗ in least squares estimation, a penalized least squares: Loss = ∑n
i=1(yi − h(xi))2 + penalty

with penalty ∶= λ ∫ [h′′(x)]
2
dx = λβ′Sβ. The smoothing parameter λ establishes a tradeoff

between the first usual term of the objective function, which measures closeness to the data, and
the second term which penalizes curvature in the function (captured by its second derivative).
Increasing λ makes the function smoother, with λ →∞ corresponding to a straight line fit. The
penalty can also be expressed in a quadratic form using a penalty matrix S.

38The cubic spline h() can be shown to be the smoothest interpolator for any given set of points {xi, yi ∶ i = 1, ..., n}, i.e.,
h() = argmin

f()
∫ xn
x1

f ′′(x)2dx, where f() are functions continuous on [x1, xn] with continuous 1st derivatives. As a cubic spline

can closely approximate any underlying smooth function, there is seldom any good reason to use a higher-order polynomial.
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While it may seem that the model is over-parameterized, due to the high number of knots, i.e., of
basis functions, the penalty term actually translates to a penalty on the magnitude of the spline
coefficients, which are shrunk toward the linear fit, reducing the effective degrees of freedom
(EDF).39 The choice of the basis dimension is therefore not critical, as the smoothing parameters
λj control the actual model complexity, as long as k is not set to be too small (which will force
oversmoothing).40

• Multivariate smooth l(w,z)

We can also construct smooths of multiple variables.

– For isotropic smooths, i.e., functions that aim to achieve the same smoothness per unit change in
w and z, one can use a thin plate spline — not detailed here.

– When it is unreasonable to impose the same smoothness per unit change in w and z (e.g., when
the covariates are measured in fundamentally different units, such that it is difficult to scale
them relative to one another), one can use a tensor product smooth. A tensor product is
constructed from ‘marginal smooths’ of single covariates, each with its own basis and associated
quadratic penalty, by essentially creating an interaction of each pair of basis functions for each
marginal term. The basis dimension of the tensor product smooth is the product of the dimensions
of the marginal bases. Ex: A tensor product smooth output with 3 EDF means that the model
simplified to β0 + β1wi + β2zi + β3wi.zi.

Bayesian/‘Random model’ view of smoothing The smoothing penalties on model coefficients can
be given a Bayesian interpretation: namely, we have a Gaussian prior on how smooth the function is, and
update it after seeing the data. Defining such a prior on model wiggliness actually gives the model the
structure of a mixed-effects model. See (Wood, 2017, section 5.8) for details.

• prior: f() is more likely to be smooth than wiggly: f(β)∝ exp (−λβ′Sβ
σ2 ) ⇐⇒ β ∼ N (0, σ2 S−

λ
)

• posterior: β∣y ∼ N (β̂, (X′X + λS)−1σ2) and β̂MAP = (X′X + λS)−1X′y

Estimation We can make use of this parallel between the smoothing penalty on model coefficients and a
random effect modeling of these coefficients in two ways: (i) to incorporate random effects into a GAM by
treating them as wiggliness penalties, and estimating them without needing to use random effects methods;
(ii) or to fit a GAM as a Generalized Additive Mixed Model (GAMM).

• GAM with explicit penalties

Once a basis and a wiggliness penalty have been chosen for each smooth function, the GAM can be
estimated. Estimation is by penalized versions of the least squares41 and maximum-likelihood methods
used for linear models. The fitting of a GAM has two components:

(1) Estimating βs given λs (estimating the model coefficients under the penalty)

(2) Estimating the degrees of penalization λs. Multiple methods are possible: prediction error meth-
ods, such as Generalized Cross Validation (GCV), or marginal likelihood methods based on the
Bayesian/random model view of smoothing.

39The Effective Degrees of Freedom (EDF) tell you how ‘wiggly’ the fitted line is. For an EDF of 1, the predictor was
estimated to have a linear relationship to the outcome. The EDF are just reported as a summary of the complexity of the
estimated smooth function.

40In the R package mgcv::, choosing the argument k (the basis dimension) in spline functions amounts to setting the
maximum possible degrees of freedom allowed for each model term. The actual effective degrees of freedom for each term will
usually be estimated from the data, by the chosen smoothness selection criterion, but the upper limit on this estimate is k − 1:
the basis dimension minus one degree of freedom due to the identifiability constraint on each smooth term.

41Least squares can be used only in the case of a generalized additive model.
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As aforementioned, this framework also enables to incorporate conventional random effects into the
GAM, by representing them like the smooths are represented: as penalized regression terms.42

• GAMM

All the smooths are converted into random components, in particular the smoothing parameters become
components of the variances of the random effect, and the whole model is estimated as a general mixed
model (by ML, REML, or PQL).43

For example, for a univariate spline s(x) = ∑j βjbj(x), the coefficients are represented as random

effects, i.e., as belonging to a group: βj ∼ N (0, σ2
βH), where H contains the penalties. At one extreme,

an unpenalized likelihood (β1, ..., βk estimated as fixed effects) would overfit and provide “wiggly”
estimates, whereas at the other extreme, a linear fit (β1 = ... = βk = 0) would smooth excessively and
capture the relationship with only two parameters.

An advantage of this GAMM approach is that it allows to incorporate correlated error structures, by
dealing with them via random effects.

Fezzi and Bateman (2015) uses this method to obtain the optimal (i.e., best linear unbiased predictor)
trade-off between excessive smoothing and overfitting of the nonlinear function.

42The R function mgcv::gam tackles fitting a GAM as a penalized likelihood maximization problem, and uses a separate
criterion to estimate the smoothing parameters. The computational strategy is as follows: Basis functions and quadratic penalty
matrices are constructed for each smooth term and are combined with a matrix for the strictly parametric part of the model, to
form a complete “design” matrix and a set of penalty matrices for the smooth terms. The linear identifiability constraints are
also added. The penalized likelihood maximization problem is then solved by Penalized Iteratively Re-weighted Least Squares
(PIRLS), and the smoothing parameter estimation problem is solved using the GCV criterion or a Laplace approximation to
REML, and is conducted by “outer iteration”: The PIRLS scheme is iterated to convergence for each trial set of smoothing
parameters, and GCV or REML criteria are only evaluated on convergence (optimization is ‘outer’ to the PIRLS loop). Random
effects can be incorporated by specifying the basis as such. Ex: s(g,bs=‘re’) generates an i.i.d. normal random effect; if g is
a factor, it produces a random coefficient for each level of g, with the set of coefficients modeled as i.i.d. normal.

43In the normal errors, identity link case, estimation can be performed using general linear mixed effects modelling software
(e.g., in R, as provided by the function nlme::lme). This is what the R function mgcv::gamm does. It shows it explicitly
by returning two items: (i) the fitted model returned by nlme::lme, and (ii) an object of class ‘gam’, including a posterior
covariance matrix for the parameters of all the fixed effects and the smooth terms.
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A.4 Multilevel models

Context We are interested in the relationship of yi with xi. Our data present some hierarchical structure:
individuals belong to groups.44 Hence observations are not independent, we may expect a group effect aj[i]
on the outcome, and we may expect also both a within-group relationship and a between-group relationship
of xi with the outcome.

Structure A multilevel model is a generalization of a classical regression model that not only allows for
variation in coefficients but models that variation. Let us consider a simple 2-level model. The lower level
is a common regression model with individual-level predictors. Now some of its coefficients (the intercept
and/or slopes) are allowed to vary by group and are modeled, i.e., they are given a probability model, which
constitutes the higher- or group-level model.

The generalization proceeds along two dimensions; simple examples of models are given below:45

(i) which coefficients are modeled, and whether they are attributed a common multivariate distribution
or separate distributions;

(ii) whether group-level predictors are included.

∀i = 1, ..., n, j = 1, ..., J :

varying intercept varying intercept and slope co-varying intercept and slope

w/o
group-
level
predic-
tors

yi ∼ F1(aj[i] + βxi, σ2
y)

aj ∼ F2(µa, σ2
a)

yi ∼ F1(aj[i] + bj[i]xi, σ2
y)

aj ∼ F2(µa, σ2
a)

bj ∼ F3(µb, σ2
b)

yi ∼ F1(aj[i] + bj[i]xi, σ2
y)

[aj
bj
] ∼ Fab ([

µa

µb
] , [σ

2
a σab

σab σ2
b
])

with
group-
level
predic-
tors

yi ∼ F1(aj[i] + βxi, σ2
y)

aj ∼ F2(α0 + α1zj , σ2
a)

yi ∼ F1(aj[i] + bj[i]xi, σ2
y)

aj ∼ F2(α0 + α1zj , σ2
a)

bj ∼ F3(β0 + β1lj , σ2
b)

yi ∼ F1(aj[i] + bj[i]xi, σ2
y)

[aj
bj
] ∼ Fab ([

α0 + α1zj
β0 + β1lj

] , [σ
2
a σab

σab σ2
b
])

Terminology and relation to classical models

Let us see what assumptions these models embed, and how these compare to those of classical single-
level models. For simplicity, we consider a normally-distributed outcome and a single regressor xi with a
homogeneous effect β, i.e., group effects manifest only through the intercept).

Any model fit embeds some assumption about how these group effects {aj[i]}j are distributed. And notably
about their variance σ2

a, which shows how close they are to each other, i.e., how much they are pooled toward
their mean. Classical models correspond to extreme assumptions about this variance, while a multilevel
model is a data-driven compromise:

• Complete pooling : We don’t allow for group effects.

44For example, we have observations of n students in J classrooms such that each student i belongs to a group j[i], or we
have longitudinal data, where each dated observation {i, t} belongs to a unit i. For simplicity, we consider in this section only
such hierarchical data with two levels. However, results extend to more levels, that can be nested or not.

45For clarity, we use Latin letters for variables and modeled parameters, and Greek letters for fixed parameters (as distin-
guished in a frequentist framework). The fixed parameters that inform varying parameters are called the “hyperparameters”
of the full model.
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– Conceptualization: No group effects.
– Implementation: We neither model them nor adjust for them. We fit the basic model:

yi = α + βxi + ei, ei ∼ N (0, σ2
y)

⇐⇒ yi = aj[i] + βxi + ei, ei ∼ N (0, σ2
y), aj ∼ F(α, 0)

(m1)

• No pooling : We allow for group effects but don’t model them.

– Conceptualization: The group effects are “fixed effects”, unrelated to each other.
– Implementation: We fit a separate intercept per group (by including a dummy variable for each j)

or de-mean the data by group, which eliminate the group effects. We fit the “fixed effects” model:

yi = αj[i] + βxi + ei, ei ∼ N (0, σ2
y)

⇐⇒ yi = aj[i] + βxi + ei, ei ∼ N (0, σ2
y), aj ∼ F(α, ∞)

⇐⇒ (yi − ȳj[i]) = β(xi − x̄j[i]) + ei, ei ∼ N (0, σ2
y)

(m2)

• Partial pooling : We allow for group effects and model them.

– Conceptualization: The group effects are “random effects” with a joint probability distribution.
– Implementation: We model them with error, i.e., we estimate the parameters of that distribution.

The {aj}s are pooled toward their common mean µa, by an amount that depends on the sample size
of each group and on σ2

a,
46 which is also estimated from the data. We fit the multilevel or “random

effects” model:47

⎧⎪⎪⎨⎪⎪⎩

yi = aj[i] + βxi + ei ei ∼ N (0, σ2
y)

aj ∼ F(µa, σ2
a)

(m3)

Partial pooling is thereby a data-driven compromise between complete pooling (equivalent to setting σa → 0)
and no pooling (setting σa →∞). The former assumes away variation between groups, while the latter risks
overstating that variation, i.e., overfitting the data, and neither lets us analyze it (Gelman and Hill, 2006,
ch. 12).

Why use multilevel models?

In short: to (1) acknowledge and (2) analyze within-group and between-group variations.

• To account for the group-dependence in our data (e.g., with time series, spatial correlation, networks...).
Traditional regression techniques assume independent observations. Any dependence structure in our
data that isn’t modeled will be left out in the error term, and the corresponding standard errors of
regression coefficients will be underestimated (esp. that of higher-level regressors). A common way to
deal with group-dependence in econometrics is to fit group dummies and to cluster standard errors by
group (after fitting the model, a new estimator of the error covariance matrix is computed that adjusts

46Partial pooling is proportional to the variance, not the standard deviation.
47In the regression framework, multilevel regression models are a particular case of “random effect” models that pool

information across groups, or “mixed effect” models when they include both a “random effect” component and a “fixed effect”
component (e.g., a varying-intercept, fixed-slope model). The “fixed effect” vs “random effect” terminology is confusing, as
different disciplines use these to refer to different things. For instance, in econometrics, a fixed effect is an intercept that varies
by group (and that is estimated using dummy variables, i.e., that isn’t modeled), while in other branches of statistics, it means
a coefficient that does not vary. Gelman and Hill (2006, p. 245) suggests to avoid these terms and instead describe models
explicitly: for example, a ‘varying intercepts and constant slopes’ model.
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for the dependence within groups). Instead, a multilevel model models this group-dependence. It is
equivalent to a classical regression model with correlated and modeled errors:48

⎧⎪⎪⎨⎪⎪⎩

yi = αj[i] + x′iβ + ei, ei ∼ N (0, σ2
y)

αj = µα + ηj , ηj ∼ N (0, σ2
α)
⇐⇒ yi = µα + x′iβ + ei + ηj[i]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ealli

, eall ∼ N (0,Σ)

• To increase efficiency by pooling information. By treating groups as a “random-effect” within the
model, we can pool shared information about the mean across the groups. Partially pooling the
varying coefficients will produce more efficient (less noisy) estimates of the J regression lines than by
including group indicators, especially when the number of observations in some groups is small.49

• To model heterogeneity in the relationship to a covariate. For example, in causal inference, we may be
interested not just in an average treatment effect but also in how the effect varies across the population.
With a multilevel model, we can model variation in the expected treatment effect, for example as a
function of pre-treatment covariates x.

• To generalize results to a population not well-represented in the sample.

– To do inference for the population of groups when our data are not random samples: one can
generalize to a larger population using multilevel regression and poststratification (MRP).

– To estimate ŷ for particular groups: notably to get reasonable estimates even for groups with
small sample sizes (which is difficult with classical regression).

– To predict a new observation in a new group: multilevel regression enables to quantify sources
of variation, and hence to propagate the uncertainty about the new group into the uncertainty
about the new individual in this group; this distinction isn’t provided in classical regression.

Ex: With fixed effects, these group effects are allowed to take any value whatsoever, which amounts
to saying that each individual group is completely different to every other group: having results for
6 groups tells us nothing about a 7th. Treating the groups instead as a random sample from the
population of groups allows us to estimate the relationship between yi and xi and to generalize beyond
the 6 groups in the sample. Each new group would indeed have the same distribution as that of the 6
groups in the sample.

Endogeneity concern in causal inference, solved by REWB

Context: We want to estimate the causal effect β of xi on yi. But there are unobserved group-level or
“between” effects that are correlated with xi and determine yi. Hence the slope estimator of the “within
effect” in a simple regression of yi on xi would suffer from omitted variable bias.50 How to tackle this bias
on level 1 coefficients due to omitted variables at level 2?

We saw that the J unobserved group effects can be considered as either fixed effects (i.e., unrelated) or
random effects (i.e., belonging to a shared distribution). The FE approach provides an unbiased estimator
of the within effect, with the caveats that (i) the assumption of unrelatedness is very questionable, and (ii)
no group-level variable can be identified as all the group-level variance is accounted for. However, the simple
RE model presents another important problem: its estimator β̂ is biased for the within effect. Indeed, a

48The error ealli is the sum of an individual-level noise ei and a group-level error ηj[i] which induces correlation in eall. The
covariance matrix Σ is parameterized in some way, and these parameters are estimated from the data.

49Note however that when the number of groups J is small, it is difficult to estimate the between-group variation σ2
a precisely.

As this σ2
a determines the amount of partial pooling, a bad estimation of its value results in pooling by a somewhat random

amount. Hence multilevel modeling adds little to no-pooling models.
50This endogeneity concern can arise with any form of nested data. A very common case is that of longitudinal data (it =

level 1, i = level 2), where the concern is of time-constant effects that are plausibly correlated with xit.
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correlation with x̄i is left in the error term, as can be seen by rewriting the model as below, where ηj contains
these problematic unobserved group-level effects that are correlated with xi and determine yi:

⎧⎪⎪⎨⎪⎪⎩

yi = aj[i] + x′iβ + ei, ei ∼ N (0, σ2
y)

aj = µα + ηj , ηj ∼ N (0, σ2
a)
⇐⇒ yi = µα + x′iβ + ei + ηj[i]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ealli

, eall ∼ N (0,Σ)

The bias can be described: the estimator β̂RE is actually a weighted average of the within estimator and the
between estimator.51

A solution is to add x̄j[i] as a regressor, as it will extract the problematic correlation from the composite

error term ealli . We recover an estimator of the within effect that is not biased by group-level confounders.52

The model is known as the ‘within-between RE’ (REWB) model (Bell et al., 2019), as it decomposes x into
a within-group component and a between-group component, or ‘correlated RE’ (CRE) model (Wooldridge,
2013, 14.3). The three expressions of the model below are equivalent:53

⎧⎪⎪⎨⎪⎪⎩

yi = aj + β1(xi − x̄j) + β2x̄j + ei
aj ∼ N (µa, σ2

a)
⇐⇒

⎧⎪⎪⎨⎪⎪⎩

yi = aj + β1(xi − x̄j) + ei
aj ∼ N (α + β2x̄j , σ2

a)
⇐⇒

yi = β0 + β1(xi − x̄j) + β2x̄j + νj + ei,
νj ∼ N (0, σ2

ν) uncorrelated w. xi

The REWB model also makes it possible to:

− estimate the between effect, as well as any relationship between the outcome and a group-level covariate
(though one couldn’t interpret its coefficient as causal);

− test whether the between and the within effects are significantly different (with a Hausman test of
whether the difference between the two coefficients in the model is statistically different from 0);

− estimate the level-2 variance and compare it to the level-1 variance.

The REWB model can also naturally be extended to varying intercepts and slopes and/or additional group-
level predictors.54

CCL: do FE only when really don’t care about between-group relationships + don’t worry about efficiency
(have a very large sample size).

Inference

51β1 = wWβW+wBβB
wW+wB

, where wW ∶= 1/SE[β̂W]2 and wB ∶= 1/SE[β̂B]2 are the precisions of the within estimate and the between

estimate, respectively. As there are more data at level 1 (and therefore higher precision of the within estimate), β̂1 will often
tend towards the within estimate (Bell et al., 2019).

52△! With a non-identity link function, unbiasedness is guaranteed only if uj is a linear function of x̄j[i]. I.e., to get an unbi-
ased effect, we are trading one assumption of linearity for another (in the standard model, we assume an identity link function;
in the REBW model with non-identity link function, we assume uj is a linear function of x̄j). However, the available evidence
(from simulations) suggests that the bias of the REBW method remains small in most situations (Bell et al., 2019). One can
also include functions of x̄j[i] as regressors to characterize more flexible functional forms of the correlation. P. Allison suggests

using polynomial functions of the means, i.e., including not only x̄i but also x̄2
i , x̄

3
i as regressors, or other cluster-level functions

of the xit, such as their standard deviation (see https://statisticalhorizons.com/problems-with-the-hybrid-method/). If
the estimates of the added coefficients aren’t significant and the estimate of βW doesn’t change much, it suggests the linearity
assumption is reasonable and bias should not be such an issue.

53We center level-1 variables, i.e., we use as regressor (xit − x̄j[i]) rather than xi, such that there is no correlation between

(xit − x̄j[i]) and x̄j[i] and β2 represents the between effect rather than the “contextual effect” (Bell et al., 2019).

54For example:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yi = aj + bj(xi − x̄j) + ei
⎡⎢⎢⎢⎢⎢⎣

aj

bj

⎤⎥⎥⎥⎥⎥⎦
∼MVN

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

β0 + β2x̄j

β1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

σ2
a σab

σab σ2
b

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

⇐⇒ yi = β0+β1(xi− x̄j)+β2x̄j +νi0+νi1(xi− x̄j)+ei, where the

composite error term νi0 + ei is uncorrelated with xi. For unbiasedness, the group average need not be included as a predictor
for the slope?
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• Frequentist (point estimation)
First the hyperparameters are estimated via Maximum Likelihood or Restricted Maximum Likelihood
(REML), then inference is performed for the coefficients conditional on the estimated hyperparameters.

△! ML estimators are unbiased for the group-level mean parameters but downward-biased for the
group-level variance parameters (especially when the number of groups is small), because the mean
parameters are assumed to be known with certainty when estimating the variance parameters.
Instead, REML accounts for the number of mean parameters estimated, losing 1 degree of freedom
for each, and so produces unbiased estimators of variance parameters. Note however that to
compare models with different fixed effects with a likelihood ratio test, ML must be used, as LR
tests for REML require exactly the same fixed effects specification in both models.

 Computational: fast.

 A. Gelman: “The usual non-Bayesian procedures are designed to work well asymptotically (in the
case of hierarchical models, this is the limit as the number of groups approaches infinity). But as
noted Bayesian J. M. Keynes could’ve said, asymptotically we’re all dead.”

• Bayesian
All levels are fitted simultaneously. The hyperparameters are given a prior distribution, and we estimate
their whole posterior distribution.

 Accounts for all the uncertainty in the parameter estimates when predicting the varying intercepts
and slopes, and their associated uncertainty.

 Computational: slow. Markov chain Monte Carlo simulations are generally much slower than
(RE)ML estimation.
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