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1 Definitions

1.1 Research design and identification strategy

Research design = working from the research question, the overall manner in which data will be
gathered, assembled and assessed in order to draw conclusions.

Let us set the scene for the present document: We are in the subfield of econometrics concerned with
identifying causal effects from observational data. Relationships between observed variables are easy to
estimate, but when do we know that correlations are causal and not spurious?

Our goal is to determine the causal effect of an intervention or “treatment” on some population. We need a
research design that is able to credibly identify the effect if it exists. When internal validity is the priority,1

it is commonly accepted that the “gold standard” research design is the randomized trial. By randomly
assigning the treatment across participants, this experiment makes it possible to eliminate selection bias and
identify the treatment effect — this will be detailed in later sections. It suffices to say that as observational
studies strive for the strength of evidence generated by such an experiment, a key aspect of their research
design is the “identification strategy”:2

Identification strategy = how observational data are used to approximate a real experiment. It is
the set of assumptions that will identify the causal effect of interest, and includes:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

– a source of identifying variation in the treatment variable,
– the use of particular econometric techniques to exploit this information.

1.2 Experiments, natural experiments, quasi experiments

A true experiment is a study in which the researcher manipulates the level of a treatment (the
independent variable of interest) and measures the outcome (the dependent variable of interest). All
the important factors that might affect the phenomena of interest are controlled.

A natural experiment is an observational study in which a randomization of either a treatment D
or an instrument Z has occurred naturally — mimicking the exogeneity of a randomized experiment.
Researchers do not create natural experiments, they find them.

Ex: Certain weather events, natural disasters, a lottery..

A quasi experiment is a study of intentional treatment, that resembles a randomized field experiment
but lacks full random assignment. Participants are not randomly assigned to the treatment or control
group. The groups therefore differ in often unobservable ways, so one must control for as many of these
differences as possible. The control group is rather called a “comparison” group.

Ex: In the 1990s, the U.S. Department of Housing and Urban Development (HUD) implemented a
grant program to encourage resident management of low-income public housing projects. Housing
projects were selected in 11 cities nationwide, so the treatment (the award of HUD funding) was
not randomly assigned. But similar housing projects in the same cities provided a reasonably valid
comparison, so the HUD was able to evaluate the program.

1The notions of internal vs. external validity are defined in section 4.4.3. Let us note for the time being that the methods
of choice for internal validity may also limit the external validity of the findings. Ex: a zoo is a controllable setting amenable
to drawing causal inferences about animal behavior, but these inferences may not generalize to animals in the wild.

2Angrist and Pischke (2008) uses the notions of research design and identification strategy interchangeably.
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2 Framework: a counterfactual approach to causality

2.1 The potential outcomes framework

2.1.1 The original selection bias problem and the CIA

We have a population, of which we observe a sample of units i = 1, ...,N , and a binary treatment of interest
Di ∈ {0,1} whose causal effect on Y we want to estimate. Let unit i’s potential outcomes3 be Y 1

i if they were
to receive the treatment, Y 0

i otherwise, and let Yi be their realized outcome. We assume additive treatment
effects, and no interference between units.4 The potential outcomes framework allows for defining estimands:

Individual treatment effects (TEs) Y 1
i − Y 0

i , ∀i what we would ideally estimate

Average treatment effect (ATE) E [Y 1
i − Y 0

i ] what we reasonably want to estimate

Average treatment effect on the treated (ATET) E [Y 1
i − Y 0

i ∣Di=1] what we reasonably want to estimate

Difference in average observed outcomes E[Yi∣Di=1]−E[Yi∣Di=0] what we can estimate

Each quantity can be made conditional on covariates X; it will be the quantity ‘for given X,’ i.e., within stratum.

The focus on identification is due to the original selection bias problem:

• To measure TEi = Y 1
i − Y 0

i , we need to observe the same individual with and without treatment.

• This is impossible, we can never observe the counterfactual.5 We can only estimate the difference in
average observed outcomes:

E[Yi∣Di=1] −E[Yi∣Di=0] = ... = E [Y 1
i − Y 0

i ∣Di=1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ATET

+ E [Y 0
i ∣Di=1] −E [Y 0

i ∣Di=0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

selection bias

The average difference in Y 0
i between the treated and untreated creates a “selection bias.”6 But

selection bias can be eliminated through analysis, depending on our assumption about the treatment
assignment mechanism.7 We distinguish three classes of assumed assignment mechanisms:

– Random assignment

If treatment is randomly assigned, it is independent of potential outcomes: Di⊥⊥(Y 0
i ,Y

1
i ), so there

is no selection bias in expectation.8 This independence assumption (IA) identifies the ATET.

– Selection on observables
In virtually any observational study, Di /⊥⊥(Y 0

i ,Y
1
i ). However, if we can match treated and control

units to be proper counterfactuals, i.e., if conditional on some pre-treatment characteristics Xi,

3The potential outcomes framework for causal inference builds on Neyman (1923), was extended to observational studies
by Rubin (1974), and became popular in econometrics around 1990.

4The Stable Unit Treatment Value Assumption (SUTVA) says that the treatment received by one unit does not affect
potential outcomes for other units. This excludes spillovers, strategic interactions... which is often unrealistic (ex: vaccinations;
fertilizer leakage...). Solutions include redefining the unit of interest (aggregating), or directly modeling the interactions.

5This is the “fundamental problem of causal inference.” Its implication: we never observe causal effects.
6Selection bias is the sum of the net average balance (i.e., the net difference of means) of other causes across the two groups.

For example: if individuals with low Y 0
i choose treatment more frequently, then E [Y 0

i ∣Di=1] < E [Y 0
i ∣Di=0]; comparing Y

between treated and untreated underestimates the TE. Say we look at the effect of hospitalization; sick individuals go to the
hospital (get treated) more often than healthy individuals. But they would also have been less healthy had they stayed at home.

7Imbens and Wooldridge (2009) formally defines the assignment mechanism as P(Di= 1∣Y
0
i , Y 1

i ,Xi), with Xi observed.
8Independence removes selection bias in this expectation form, where the expectation is taken over repeated randomizations

on the trial sample, each with its own allocation of treatments and controls (Deaton and Cartwright, 2018). Independence does
not imply actual balance in any single trial. Therefore in any RCT, the sample analog of the last term may not be 0.
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treatment assignment is independent of potential outcomes: Di ⊥⊥ (Y 0
i , Y

1
i )∣Xi, and if for all

possible values of Xi, there are both treated and control units (i.e., overlap), then we can again
eliminate selection bias in expectation. We compare outcomes within each stratum of Xi:

E[Yi∣Di=1,Xi] −E[Yi∣Di=0,Xi]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
diff. in average outcomes for given Xi

= ... = E [Y 1
i − Y 0

i ∣Di=1,Xi]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ATET for given Xi

+ E [Y 0
i ∣Di=1,Xi] −E [Y 0

i ∣Di=0,Xi]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

selection bias for given Xi

The conditional independence assumption (CIA) eliminates the last term, and so identifies the
ATET for each value of Xi, i.e., within each subpopulation. We may then combine these ATETs
by weighting them in our preferred way to recover a single ATET.9

– Selection on unobservables
We can’t assume that we observe all factors that are associated both with the assignment and
with the potential outcomes... We will need other identification strategies, that will always still
rely on some independence assumption, to eliminate again selection bias. The most common of
these methods are presented in section 3.

We can recover an unbiased estimator of an average treatment effect iff an identifying/inde-
pendence10 assumption holds:

• if IA Di ⊥⊥ (Y 0
i ,Y

1
i ) ⇒ we can estimate the ATET.

• if��IA CIA Di ⊥⊥ (Y 0
i ,Y

1
i )∣Xi ⇒ we can estimate the ATET in each stratum w. overlap.

• if���CIA but ∃ a relevant instrument Z that is an exogenous source of variation in D:

Zi⊥⊥(Y 0
i ,Y

1
i ), Zi /⊥⊥Di ⇒ we can estimate a LATE.

So we need an identification strategy that convinces us that an IA holds.

Other estimands (features of the distributions of potential outcomes other than their mean)
The identification result extends beyond average treatment effects. Independence means that the entire
distributions of potential outcomes are independent of the treatment, s.t. we can also recover unbiased
estimators of quantile treatment effects — i.e, ∀p ∈ [0,1], the effect of the treatment at quantile p: τp ∶=
QY 1(p) − QY 0(p).11 Quantile treatment effects may be informative if TEs are concentrated in tails of
the distribution of outcomes, and provide more robust estimates than ATEs in settings with thick-tailed
distributions. However, with covariates Xi, we estimate conditional quantile effects τp(x) ∶= QY 1∣X(p∣x) −
QY 0∣X(p∣x), whose average of the effects across Xi is in general not equal to τp. Consistently estimating τp
under the CIA is therefore complicated (Imbens and Wooldridge, 2009).

ADD 1-2 examples of papers estimating QTEs.

9For instance, the matching estimand will weight them by the distribution of X among the treated, whereas the linear
regression estimand will weight them by the variance of D — see section 2.1.2.

10Independence assumptions are also called “unconfoundedness” or “ignorability” assumptions in statistics, meaning ignor-
ability of the assignment mechanism. Indeed, with independence, we don’t need to model the assignment process to estimate
causal effects, we need only compare group means. Examples of assignment mechanism include random assignment (⇔ IA);
selection on observables (⇔ CIA); selection on unobservables...

11△! The p-th QTE QY 1(p) − QY 0(p) is the effect of the treatment at quantile p, i.e., a difference between quantiles of
the two marginal potential outcome distributions. Not the p−th quantile of the treatment effect QY 0−Y 1(p). In general, the
latter quantile of the difference differs from the difference in the quantiles (unless rank preservation holds across the treatment
statuses). There is no similar problem in estimating the average treatment effect, as differences in means always equal means
of differences.
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2.1.2 Expressing TE as a linear regression

Suppose a heterogeneous TE, i.e., Y 1
i −Y 0

i = βi.
12 Note β the average for the treated population E[βi∣Di=1],

i.e., the ATET. The relation between observed outcomes and potential outcomes (i.e., how we estimate a
TE) can be written as a linear regression on the treatment:

Yi = Y 0
i + (Y 1

i − Y 0
i )Di

= Y 0
i + βiDi

= Y 0
i + (βi − β + β)Di +E[Y 0

i ] −E[Y 0
i ]

= E[Y 0
i ] + βDi + (βi − β)Di + Y 0

i −E[Y 0
i ]

= α + βDi + ui

The expression of the OLS slope estimand βOLS ∶= cov[Yi,Di]

V[Di]
simplifies to E[Yi∣Di=1] − E[Yi∣Di=0]: the

difference in average observed outcomes. This, in turn, given the regression equation, equals β+E[ui∣Di=1]−
E[ui∣Di=0] = ... = β + selection bias (see the demonstrations in Appendix A).

β̂OLS is unbiased for the ATET iff there is no selection bias, or equivalently, iff u is uncorrelated
with D. An identification problem (dependence) ⇐⇒ a regression problem (endogeneity).

Is the linear regression always appropriate? The demonstration above shows that to recover an
unbiased estimator of an ATET, one need simply use linear regression. This, however, corresponds to the
simplest setting: an unlimited Y , a binary D, and no confounding covariates X. Is β̂OLS still unbiased for
the ATET in a more general setting?

• With covariates X
Recall that the treatment effect we want to estimate is nothing more than a difference in averages.
So we could do this non-parametrically, by matching. As the more covariates there are, the more
complicated a nonparametric analysis is, we generally turn to regression as a computational device.
However, there are two main differences between the matching and the regression estimands.

1. With regression, unbiasedness still requires to know the functional form of the conditional expec-
tations of the potential outcomes given X with respect to X. It is common to make linearity
assumptions of these conditional expectations, which then justifies linear regression. However,
even if local linearity of the regression function is a reasonable approximation, unless this linear
approximation is globally accurate, the resulting estimator may be severely biased (Imbens and
Wooldridge, 2009). Given this, the best practice may be to combine linear regression with either
weighting or matching methods that rely on local, rather than global, linear approximations to
the regression functions.

2. They are different weighted sums of the within-stratum ATETs δx ∶= E[Yi∣Di=1,Xi]−E[Yi∣Di=0,Xi]
(Angrist and Pischke, 2008, 3.3.1). If δx varies along X, i.e., if the TE is heterogeneous w.r.t. X,
then these different sets of weights will result in estimates of two different weighted averages of
individual TEs. For simplicity, let us consider a discrete Xi:

– In the matching estimand, the weights are proportional to the conditional probability of
treatment:

βM = ... =
∑x δxwM

∑xwM

, wM ∶= P(Di=1∣Xi=x) P(Xi=x)

12We could do the same demonstration under the assumption of a homogeneous TE, i.e., Y 1
i − Y 0

i — the demonstration
would actually be simpler. However this assumption is rarely realistic.
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– In OLS, they are proportional to the conditional variance of treatment, which is maximized
when P(Di=1∣Xi) = .5, i.e., for values of Xi with as many treated as control observations.
OLS gives more weight to more precise within-strata estimates:

βOLS = ... =
∑x δxwR

∑xwR

, wR ∶= P(Di=1∣Xi=x) (1 −P(Di=1∣Xi=x)) P(Xi=x)

• With nonbinary D
We can generalize the CIA to settings where the treatment has more than two levels, and still use
linear regression to obtain unbiased estimators of causal effects. Consider the treatment intensity
Di ∈ {dl, ..., du}. Define Y d

i ∶= fi(d) the potential outcome of individual i under exposure to level d, di

its realized intensity of exposure, and Yi ∶= fi(di) its realized outcome. The CIA is Y dl

i , ..., Y du

i ⊥⊥Di∣Xi,
and the within-stratum ATET for a 1-unit increase in Di is δx ∶= E[fi(d) − fi(d−1) ∣Di=d,Xi=x].

– Ideal case: fi() is linear in d and doesn’t vary with i, up to an error: fi(d) = α + β.d +X ′iγ + ei.
Then the coefficient β in the regression model Yi = α + β.Di +X ′iγ + ei is the ATET. I.e., linear
regression is a natural tool to estimate the features of fi().

– General case: fi() isn’t linear in d or varies across individuals. Then the above regression estimates
a specific average causal effect: the weighted average of the individual-specific differences fi(d) −
fi(d−1).

• With limited Y
Consider a Y that isn’t continuous and unbounded, but is for example binary or strictly positive.
In Angrist and Pischke (2008)’s view, the structure of the outcome variable is irrelevant, linear re-
gression is always legitimate as it provides the best (in the sense of minimizing the sum of
squared errors) linear approximation to the conditional expectation function (CEF).13

– Simplest case (binary D, no X):
The CEF E[Yi∣Di] is inherently a linear function of D, so the regression vector βOLSDi is exactly
equal to it — regardless of the structure of Y . Therefore βOLS = E[Yi∣Di=1]−E[Yi∣Di=0]. As that
difference identifies the ATET (under the IA), βOLS is the perfect tool.

– General case (nonbinary D, the CEF includes other covariates):
E[Yi∣Di,Xi] is generally nonlinear for limited Y s (the saturated-covariate specification is imprac-
tical, and Y isn’t normal so (Y,D,X) isn’t multivariate normal). So linear regression won’t fit
the CEF perfectly. But it still provides the MMSE approximation to the CEF. As before, as the
CEF is causal under the CIA, linear regression thus provides the best approximation to the causal
effect under the CIA.14

2.1.3 Why might the IA/CIA not hold? Endogeneity

13A good summary of the empirical relationship between Y and D is the CEF E[Yi∣Di], and OLS regression approximates
the CEF. OLS estimates are therefore a useful baseline for most empirical research.
– Whatever the shape of the CEF, the slope vector βOLSDi provides the best linear approximation to it (in the sense that it

minimizes the sum of squared errors). Linear regression is therefore often a useful descriptor of a CEF (except in cases of a
highly nonlinear CEF; then what would we really learn from a linear approximation to it?)

– If the CEF is linear, i.e., E[Yi∣Di] = βDi, then the regression function βOLSDi is even that CEF exactly, i.e., βOLS = ... = β.
However, a CEF is linear under only two rare circumstances: if (Yi,Di) is multivariate normal, or if the model is saturated
(i.e., it has a separate parameter for each possible combination of values of the regressors).
14Note that as the regression vector misses some features of the CEF, it would most likely generate fitted values outside Y ’s

boundaries. This is a well-known problem of the linear probability model — and the reason why nonlinear models like Probit
and Tobit, which produce CEFs that respect the [0,1] boundaries, are sometimes preferred. However, if we are interested only
in estimating marginal effects (the average changes in CEF), this might matter little.
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In the simple (linear and univariate) regression model yi = α + βxi + ei, the variable xi is called

• exogenous if it is uncorrelated with the error term: cov[xi, ei] = 0;
• endogenous if it is correlated with the error term: cov[xi, ei] ≠ 0.

If x is endogenous, the OLS slope estimator of β will comprise not only the partial derivative w.r.t. x (what

we want) but also an indirect effect through e: βOLS = dy(x,e)
dx

= ∂y
∂x
+ ∂y

∂e
∂e
∂x
= β + ∂e

∂x
≠ β. The OLS estimator

is therefore biased and inconsistent for β.

In our case of interest, if the treatment Di is endogenous, i.e., cov[Di, ei] ≠ 0, it means there is an imbalance
in potential outcomes across the treatment groups. The CIA doesn’t hold. The OLS estimator will be biased.

Sources of endogeneity

• reverse causality or simultaneity: If Y also affects D, that’s captured by e, making e correlated with D;
• measurement error in D that is correlated with Y ;
• omitted variable bias (OVB): All omitted variables15 are captured by e. Therefore, if an omitted vari-
able W is correlated with D, e is correlated with D. W is a “confounding variable.”
This source of endogeneity is the most common, and therefore the one we will focus on in the rest of
the document.

→ In observational studies,
– Excluding a confounding variable creates bias, so we must adjust for all confounders.
– With all confounders adjusted for, we would have un unbiased estimator of an ATE.
– Because we can rarely be certain to have accounted for all confounders,16 i.e., the assign-

ment mechanism is by selection on unobservables, we turn to alternative identification
strategies, that rely on other assumptions.

15An omitted variable is an explanatory variable not included in the regression but which is a determinant of Y .
16For instance, in cross-sectional approaches, we worry about time-invariant omitted variables. As a cross-section offers

only ‘across’ (inter-individual) variation, if Y is affected by unobservable variables that systematically vary across groups, our
estimator will be biased. With panel data, we have across and ‘within’ (intra-individual) variation. Using individual fixed
effects, we can focus on within variation, which greatly reduces the threat of OVB.
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2.2 The causal graph framework

An alternative to the potential outcomes framework for addressing causality has gained traction in disciplines
other than economics: the causal graph framework, and more precisely the work on directed acyclic graphs
(DAGs), largely developed by J. Pearl (Pearl, 2009). We introduce it here after noting two key points:17

1. The two frameworks are not opposed, they both define causality using counterfactuals — a causal effect
is a comparison between two states of the world: a realized state as the causal variable took one value,
and a counterfactual state that would have happened had it taken another value. The two frameworks
then encode these counterfactual causal states differently.18

2. Each framework has its own benefits, which the next section summarizes.

The potential outcomes and the causal graph frameworks are therefore complementary perspectives, and it
can be useful to understand how to frame one’s causal analysis in the language of each.

2.2.1 Elements of directed acyclic graphs (DAGs)

Relationships are encoded with nodes and directed edges. Nodes represent random variables (circles are
solid if they are observed, hollow otherwise), arrows represent possible direct causal relationships. A path is
any sequence of edges. It is closed if at least one variable along the path is observed, open otherwise.

Three types of elementary paths can be sources of association between D and Y :

• mediating path: D causally affects Y through a mediator Z along a path.
↪ Conditioning on Z would block this association, we would therefore recover

only the direct causal effect of D on Y . Without conditioning, we would
recover the total causal effect of D on Y .

D
Z

Y

• confounding path: a confounder Z determines both D and Y along a path.
↪ Z creates a non-causal association between D and Y . Conditioning

on it would block this association, we would therefore recover the total
association causal effect β.

D

Z

Yβ

• colliding path: a collider Z is determined by both D and Y along a path.
↪ Z creates no association between D and Y . Conditioning on it would in-

duce a non-causal association between D and Y ,we would therefore recover
the causal effect β a non-causal association.

D

Z

Y

β

A back-door path is any path that begins with an arrow pointing to D and ends with one to Y .

Importantly, a DAG is a complete encoding of assumptions about causal relationships: those assumed to
exist represented by arrows, and those assumed to not exist represented by missing arrows. I.e., the exclusion
of an arrow is not a lack of assumption, but the assumption of no direct relationship: an exclusion restriction.

17For a detailed presentation, see Morgan and Winship (2015, ch. 1.5 & 3), of which this section is a summary.
18How directed graphs encode causal states is not detailed here. See sections 3.4 and 3.6 of Morgan and Winship (2015),

or Pearl (2009), for a detailed presentation. Importantly, we also consider only the subset of directed acyclic graphs (DAGs),
where no directed paths emanating from a causal variable also terminate at the same causal variable. This prohibition of
cycles notably rules out simultaneous causality and feedback loops. Section 3.2 of Morgan and Winship (2015) discusses the
implications.
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For example, the basic DAG on the right encodes:

∗ explicitly, 4 paths linking D to Y :

D
βÐÐ→ Y : a direct (causal) path

D ←Ð AÐ→ Y : a back-door confounding path, closed
D B Y : a back-door confounding path, open
D Ð→ C ←Ð Y : a colliding path

∗ implicitly, 3 assumptions of no direct relationships between A, B and C.

D Y

A

B

C

β

2.2.2 Two main identification strategies: 1. Blocking back-door paths; 2. Instruments

We want to estimate the causal effect of a treatment D on Y . We represent in a DAG this causal relationship,
and all other relationships relevant to the effect of D on Y . Given the structure of the causal relationships,
which variables must we observe and include to estimate the causal effect of D on Y ?

• Strategy 1: blocking back-door paths
The most common concern with observational data is that D and Y are partly determined by a third
variable, i.e., that there is a back-door path. The total association between D and Y equals β
iff there are no back-door paths.

– In the previous basic DAG:
∗ Assume B wasn’t there. The only back-door path between D and Y is closed as we observe A.
If we adjust for A, i.e., hold it fixed, we remove the association between D and Y that is driven
solely by fluctuations in A, and recover the causal effect β. We can recover β by blocking all
back-door paths, i.e., conditioning on one confounder along each back-door path.

∗ However, the back-door path through B is open, as B is unobserved. → We cannot recover β by
blocking back-door paths.

– In the more complex DAG on the right, there are
three back-door paths:19

D ←Ð A H Ð→ Y
D ←Ð B A H Ð→ Y
D ←Ð F ←→ GÐ→ Y

We can block all back-door paths by either:

∗ conditioning on H and either F or G
∗ conditioning on A and B,20 and either F or G21

D Y

A

B

C

F G

H

J

β

• Strategy 2: instruments
Instead of blocking back-door paths to estimate β directly, we can leverage an exogenous shock to D
to estimate β indirectly. We use exogenous variation in an instrument Z22 to isolate covariation in D

19To show that two variables are mutually dependent on one or more unobserved common causes, instead of abiding by the
definitions and showing it with U as in the left figure below, we can use a curved dashed bidirected edge as in the right figure
as a shorthand. These bidirected edges should however not be interpreted as mere correlations between the two variables, they
represent an unspecified set of unobserved common causes of the two variables that they connect.

A B
U

⇐⇒

A B

20Conditioning only on A would not suffice. As A is a collider along the path between B and H, conditioning only on A
would create dependence between B and H, and so wouldn’t eliminate the noncausal association between D and Y .

21We note here one insight from DAGs: we need not condition on F and G. The potential outcomes framework says one
must adjust for all confounders, so we might think that we need to adjust for F and G. The DAG shows us that one suffices.

22Instruments are formally introduced in the next section. In short, a variable Z is a valid instrument for D if it does not
have an effect on Y except through its effect on D. We can then estimate consistently the effect of D on Y by taking the ratio
of the relationships Z ↔ Y and Z ↔ D.
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and Y . In the DAG above, we can use as instrument for D either C, or F after conditioning on G.

To estimate the effect β of D on Y , we reach the same conclusion as with the potential outcomes framework:

→ In observational studies,
− Leaving a back-door unblocked, i.e., excluding a confounding path, creates bias, so we

must block all back-doors (adjust for all confounders).
− “Back-door criterion”: With all back-doors blocked, i.e., all confounders conditioned

on, we can recover an unbiased estimator of a causal effect.23

− Because we can rarely be certain that we have accounted for all confounders, we turn
to alternative identification strategies, that rely on other assumptions.

2.3 Comparative strengths and weaknesses of the PO and DAG approaches

The potential outcomes (PO) framework being the most popular in econometrics, we ask what the DAG
approach adds, and the ways in which it differs that are most relevant for work in econometrics.24

• Role of experiments and manipulability

While the PO framework elevates randomized experiments as “gold standard,” the graphical literature
doesn’t deem experiments special. Related to that is the notion of manipulability:

 The PO framework defines the potential outcomes with reference to a manipulation, and thereby
makes a distinction between attributes that are fixed for the units in the population, and causes
that are manipulable. This implicit criterion of manipulability is potentially restrictive and un-
necessary. The DAG literature does not deny causal character to nonmanipulable variables.

 Imbens (2020) finds it justified for economics as “policy relevance is a key goal.”25 In any case, the
conceptual framework of a manipulation has the benefit of clarifying the effect being identified.26

• Parts of the causal analysis addressed

Consider the three parts of a causal analysis: 1. pre-identification: the development of a causal model;
2. identification: establishing whether a particular model is identified;3. post-identification: statistical
analyses (estimation and inference from a sample).

– Neither framework helps much with #1 (postulating a causal model of how the world works).

– The graphical literature considers the three steps as separate problems, and addresses almost only
#2. We note that DAGs encode nonparametric causal relationships; no assumptions are made
about the functional forms of dependence between variables and the variables’ distributions. All
interactions between the effects of different variables (e.g., D and X) on Y are also already
permitted (directed edges to Y signify inclusion in the structural function fY (D,X, ...)).

– On the contrary, in econometrics (based on the PO framework), most of the methodological
literature on causality explicitly considers #2 and #3 jointly and is about estimation methods
(e.g., the literature on weak instruments, propensity score...), as it sees many statistical problems
in #3 as specific to the causal nature of the questions in #2.

24Imbens (2020) proposes such a review, of which the majority of this section is (an attempt of) a summary.
25He writes: “It is also not obvious to me why we would care [...] if the effect is not tied to an intervention we can envision.”

and notes that much of the empirical work in economics focuses on questions about manipulations, e.g., “What would happen
to my headache if I take an aspirin?” “How effective is a given treatment in preventing a disease?”

26For example, consider a study comparing hiring outcomes when the racial-sounding of applicant names is changed. The
conceptual framework of a manipulation helps clarify that the study cannot estimate the causal effect of race itself. What it
captures is the well-defined causal effect of manipulation of the perception of race.
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• Representation of identifying assumptions and identification strategies

 The identifying assumptions that concern the existence or not of relationships are explicit in their
graphical versions, and hence often much clearer than their algebraic versions. Ex: in IV settings,
the DAG illustration of the exclusion restriction and independence assumption as missing arrows
is arguably clearer than their expression as correlations between residuals and instrument.

 Other assumptions are not easily captured in the DAG framework, in particular shape restrictions
(monotonicity, convexity. . . ). Yet these play an important role in economic theory and applied
identification strategies like IVs and RDs. The two main identifying assumptions in an RD
setting are of a discontinuity in one conditional expectation and smoothness of other conditional
expectations, and DAGs here arguably don’t make them clearer (see Steiner et al. (2017)) .

 The DAG literature proposes a machinery to infer identifiability given a complex model in a
systematic way. In particular, it provides a criterion for choosing the variables to condition on —
leading in identification strategies such as the backdoor criterion and the front-door criterion.27

It shows the different ways to estimate a causal effect, and that “controlling for all other causes
of Y ” can be misleading. For example, in the previous DAG #2, it showed that there were two
possible strategies (after conditioning for either F or G): conditioning on either H or A and B.

 Accounting for treatment effect heterogeneity is difficult with DAGs, while the PO framework
enables it. For example, the identification of LATEs is not easily derived in a graphical approach.

Aside from these theoretical concerns, Imbens (2020) suggests practical reasons for the lack of adoption of
DAGs in economics:

− The lack of concrete examples of the benefits of the DAG approach in realistic settings. The PO framework
became popular because of empirical studies showing the merits of the proposed methods. “In the absence
of concrete examples that highlight their benefits over traditional methods, the toy models in the DAG
literature sometimes appear to be a set of solutions in search of problems, rather than a set of clever
solutions for substantive problems previously posed in social sciences.”

− DAGs are by definition non-cyclical, and as such exclude questions of simultaneity and equilibrium be-
havior. Whereas equilibrium assumptions are central to economics, and are accommodated in the PO
framework.

27The front-door criterion is not developed here as it relies on exclusion restrictions that seem unrealistic in many social
science applications. As Imbens (2020) points out, such difficulty in specifying credible models in economics “was a big part of
the motivation for the so-called credibility revolution, with its focus on natural experiments.”
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3 Design stage: canonical identification strategies

Hierarchy of common identification methods A contestable hierarchy of the most common identi-
fication methods in the ‘randomista’ toolkit, based on their capacity to mimic random assignment, is as
follows:

0. Randomized experiments (RCT) — or ‘natural’ randomization of treatment D

1. Instrumental variables (IV) and regression discontinuity (RD)
If there may be selection into treatment based on unobservables, we use an instrument or discontinuity
that induces exogenous variation in treatment status.

2. Difference-in-differences (DiD), event studies and Synthetic control methods (SCM)
If we have repeated observations and want to estimate the effect of an event, we use research designs
that assume or construct parallel trends and the presence of only time-invariant confounders.

3. Matching estimators
Strategies based solely on matching are considered much less credible — in terms of making us believe
in the CIA, and thus their ability to recover a causal effect — than strategies based on some exogenous
variation. Indeed, they require assuming that all confounders are observed (the assumed assignment
mechanism is by “selection on observables”). While matching should therefore not replace a natural-
or quasi-experiment design, it can however complement it. It is adressed in this context in section 4.

The sections below present, for each method and in its canonical setup: (i) the assumed data generating
process (DGP), (ii) the identifying assumptions, (iii) the estimand, i.e., the treatment effect of interest, (iv)
the estimator used, and (v) some best practices, and strengths and weaknesses. Importantly, the relation
between the actual observed outcomes Yi and the conceptual potential outcomes Y 0

i
,Y 1

i
is

made explicit. This relation is crucial: it is the reason why our estimation (using Yi) is able to recover a
causal treatment effect (defined by Y 0

i , Y
1
i ).

For simplification purposes, all methods are presented without the inclusion of exogenous controls Xi, but
the relationships can be generalized to conditioning on covariates Xi.
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3.1 IV

DGP Yi = α + βi Di + ui, cov[Di, ui] ≠ 0: Di is endogenous. But ∃ a binary instrument Zi that is
a random source of variation in Di, it “assigns” or changes the probability of treatment. We can use the
instrument to isolate variation in D that is unrelated to u, and recover β.28

D YZ

u

βγ
Di = δ + γ Zi + vi
Yi = α + β Di + ui, cov[Di, ui] ≠ 0

Potential outcomes
We define the treatment assignment Zi ∈ {0,1} and the treatment realization
Di ∈ {0,1}. Zi = 0 induces the potential treatment status D0

i , realized as 0 if
individuals comply, 1 if not. Zi = 1 induces D1

i , realized as 1 if they comply,
0 otherwise. The compliance behavior defines 4 categories of participants,
which the researcher cannot observe; they can only observe Zi and Di.

D0
i D1

i

compliers 0 1

always-takers 1 1

never-takers 0 0

defiers 1 0

Identifying assumptions

(A1) independence or ‘exogeneity’ (of Z w.r.t. the potential outcomes): cov[Zi, vi] = 0. I.e., there is no
unmeasured confounder that affects both the instrument and the outcome.

(A2) exclusion restriction (no direct effect of Z on Y ): Z affects Y only through D: cov[Zi, ui] = 0. → The
effect of Z on Y or “intention to treat” of ITTnever-takers = ITTalways-takers = 0.

(A3) relevance (of Z): cov[Zi,Di] ≠ 0

(A4) monotonicity (of the effect of Z on D): Z is an incentive, it does not discourage treatment (no defiers).
→ Compliers are the only individuals whose treatment status could be altered by the instrument.

Estimand βIV ∶=
cov[Yi, Zi]
cov[Di, Zi]

= ... = E[Yi ∣ Zi=1] −E[Yi ∣ Zi=0]
E[Di ∣ Zi=1] −E[Di ∣ Zi=0]

= ... = E[Y 1
i − Y 0

i ∣D0
i =0,D1

i =1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

LATE on the compliers

Estimator A natural choice of estimator is the sample analog called “Wald estimator” β̂W = ĉov[Yi,Zi]

ĉov[Di,Zi]
.

β̂W turns out to be numerically equivalent to the two-stage least squares (2SLS) estimator β̂2SLS obtained
through the two-step process:29

1st stage: Di = δ + γ.Zi + vi Ô⇒ D̂i = Ê[Di∣Zi] : exogenous by construction

2nd stage: Yi = α̃ + β̃.D̂i + ei

Note: The “reduced form” of a model is that where the endogenous variables are expressed as functions of
the exogenous variables. In the IV setting, the regression of Y on Z is therefore called the reduced form, and
estimates the intention to treat (ITT), whereas the IV estimates the ATET.

28For more complicated treatment variables, we will need more complicated instruments. Ex: to identify several treatment
variables, we will need at least as many instruments; to identify a continuous treatment, we can’t use a binary instrument.

29The point estimates are equivalent, however the SEs of the 2nd stage would not give the correct SEs, as we need to adjust
for the two stages of estimation. We must account for the estimation uncertainty from the first-stage (the first-stage is based
on a sample, not the population, making D̂i a random variable, instead of the usual fixed variable). Most 2SLS packages do
the adjustment automatically — otherwise one can simply bootstrap the SEs manually.
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Best practices

• Support the relevance assumption by showing a large F-statistic for the 1st stage (rule of thumb:
F > 10). The bigger F , the “stronger” the instrument.

• As in any observational study, adjust for all other relevant pre-treatment variables (precisely, predictors
of Y that would not be affected by D), making sure to include the same variables in both stages.

• Different valid instruments select different sets of compliers, leading to different estimands and thus
estimates. Think of the group of compliers selected, to make sure the instrument is relevant w.r.t. the
policy of interest. Then count and characterize these compliers to get more out of the LATE.

• For models that are non-linear in D, the properties of 2SLS do not necessarily hold, so one may want
to consider alternative estimation strategies, such as the “control function method”:

– Method: 2 stages: (i) same first stage, extract the residuals v̂; (ii) OLS regression of Y on (Z,D, v̂).
– Limits: CF is generally more efficient but less robust than 2SLS as it imposes additional restric-

tions.

Strengths & weaknesses

+ Compelling identification strategy

– β̂IV is less efficient than OLS, and this precision further decreases with weak instruments.

– β̂IV has “finite sample bias,” which stems from the randomness in estimates of D̂i and increases with
the weakness and number of instruments.

Ô⇒ Beware of weak instruments. They can render β̂IV considerably less efficient and even more biased
than β̂OLS.

30 See Andrews et al. (2019).

– In many settings (e.g., models non-linear in D, non-saturated models with covariates), 2SLS can be
very biased. New paper: https://a-torgovitsky.github.io/tsls-weights.pdf

• One can also use IVs to address the attenuation bias that may result from measurement error in D.
Ex: Krueger and Lindahl (2001) uses an IV to address attenuation bias in cross-country estimates of
the returns to education.

Counting and characterizing compliers to get more out of the LATE Compliers (D1
i > D0

i ) are
rarely representative of the population, due to selective uptake. While we cannot identify individual compliers
in the data, we can (i) estimate the size of the complier group, and (ii) characterize them in terms of their
distribution of observed covariates.

• Counting compliers: We can measure (Angrist and Pischke, 2008, 4.4.4):

– The size of the complier group. It’s the Wald 1st stage: P(D1
i >D0

i ) = ... = E[Di∣Zi=1]−E[Di∣Zi=0]

– The share of treated that are compliers:

P(D1
i >D0

i ∣Di=1) = . . . =
P(Zi=1) × (E[Di∣Zi=1] −E[Di∣Zi=0])

P(Di=1)
= share(Zi=1) × 1st stage

share treated

• Characterizing compliers: We can describe the distribution of covariates X for compliers.

– For binary characteristics, we can calculate relative likelihoods (Angrist and Pischke, 2008, 4.4.4).
For example, the likelihood that a complier has Xi = 1 relative to any individual is:

P(Xi=1 ∣D1
i >D0

i )
P(Xi=1)

= . . . = E[Di∣Zi=1,Xi=1] −E[Di∣Zi=0,Xi=1]
E[Di∣Zi=1] −E[Di∣Zi=0]

= 1st stage ∣Xi=1
1st stage

30Note that these are different biases: endogeneity bias with the OLS estimator and sample bias with the IV estimator.
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– For general covariates, we can calculate the mean —or other features of the distribution — of the
covariate for compliers using Abadie (2003)’s kappa-weighting scheme:
Suppose the identifying assumptions hold conditional on Xi. For any function g(Yi,Di,Xi) with
finite expectation, we have E[g(Yi,Di,Xi) ∣ D1

i > D0
i ] =

E[κig(Yi,Di,Xi)]

E[κi]
, with the weighting func-

tion κi = 1 − Di(1−Zi)

1−P (Zi=1∣Xi)
− (1−Di)Zi

P (Zi=1∣Xi)

– Applications: See Almond and Doyle (2011); Kowalski (2021).
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3.2 RD
Known assignment mechanism but no overlap

Sharp RD

DGP Treatment Di is not randomly assigned, it is deterministic, but discontinuous along a continuous
pretreatment “running variable” Xi, s.t. there is “local randomization” around a cutoff c: Di = 1{Xi ≥ c}.
Because Di is a deterministic function of Xi, there are no confounding variables other than Xi. Given the
trend relation E[Y 0

i ∣Xi] = f(Xi), the DGP is described below, where the brown arrows disappear as X→c:31

D Y

X u

β

Yi = α + β.Di + f(Xi, ϕ) + ui

△! There is zero overlap, as the assignment is a deterministic function of Xi (there is no value of Xi with
both treatment and control observations), so we must extrapolate across Xi. We make comparisons by
exploiting the continuity of potential outcomes across Xi. This means the RD estimate will be only as good
as our model for E[Y 0

i ∣Xi]: we can’t be that agnostic about functional form. But by looking only at data in
a small neighborhood around c, the TE estimate should not depend much on this correct specification.

Identifying assumptions

(A1) local continuity: the expected potential outcomes E[Y 1
i ∣Xi] and E[Y 0

i ∣Xi] are continuous in Xi at c.
I.e., the other determinants of Y don’t jump at c. Ô⇒ The average outcome of those right below the
cutoff (who are denied the treatment) are a valid counterfactual for those right above (who receive it).

(A2) relevance: discontinuity in the dependence of Di on Xi: Di = 1{Xi ≥ c}

Together, these assumptions imply that we can attribute a jump in Yi at c to the causal effect of Di.

Estimand βRD = lim
x→c+

E[Yi ∣Xi = x] − lim
x→c−

E[Yi ∣Xi = x] = ... = E[Y 1
i − Y 0

i ∣Xi = c]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
LATE at the cutoff

Estimator We can estimate β at the cutoff by running the regression:32

Yi = α +β Di + f(Xi) + ei

Best practices

• Choice of f(): f() is unknown. This is a problem, as misspecification of the functional form of
the DGP may bias the estimator. The statistical challenge is of estimating a regression function
nonparametrically at a boundary point. It is therefore done with flexible functional forms, such as:

– a local linear regression model: Yi = α +βDi + γ1(X − c) + γ2(X − c)D + ei with c − h ≤X ≤ c + h.33
– a polynomial regression model with a low-degree polynomial, e.g., quadratic. Higher-order polyno-

mials can lead to overfitting and introduce bias (Gelman and Imbens, 2019).

31The causal graph is taken from Steiner et al. (2017).
32To allow for different trend functions for E[Y 0

i ∣Xi] and E[Y
1
i ∣Xi] (i.e., to let the regression model differ on each side of

the cutoff), add interactions between D and f(): Yi = α + β.Di + f(Xi, ϕl) + f(Xi, ϕr)Di + ei
33A larger bandwidth h increases precision but also bias. Choose the optimal h by estimating the model’s predictive accuracy

for different values of h, for example using leave-one-out cross-validation: iteratively for each observation i, fit the model using
only the observations Xi−h ≤X < Xi < c when Xi < c, and only the observations c < Xi <X ≤ Xi+h when Xi ≥ c.
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In both cases, report the results of several specifications to assess the sensitivity to f().
• As in any observational study, adjust for all relevant pre-treatment variables. Just because the assign-
ment depends on X, there is no reason to expect overlap and balance across pre-treatment character-
istics not captured by X. We need to adjust for pre-treatment differences between the two groups.

Strengths & weaknesses

+ RDDs are similar to a local randomized experiment, and thereby require weak assumptions.

+ RDDs are all about finding “jumps” in the probability of treatment as we move along some X. They
have much potential in economic applications, as geographic boundaries or administrative or organi-
zational rules (e.g., program eligibility thresholds) often create usable discontinuities.

– They risk being underpowered.

– The parameter estimates are very “local,” their external validity may be low.

Fuzzy RD (imperfect compliance)

DGP AtXi ≥ c there is a jump, not in treatment assignment (Di going from 0 to 1), but in the probability of
treatment assignment P(Di=1 ∣Xi). The discontinuity Zi ∶= 1{Xi ≥ c} becomes an instrumental variable for
treatment status Di. The DGP is represented in the causal graph below, where the brown arrows disappear
as X→c:

D YZ

X u

β

Estimand βRD ∶=
lim
x→c+

E[Yi ∣Xi=x] − lim
x→c−

E[Yi ∣Xi=x]

lim
x→c+

E[Di ∣Xi=x] − lim
x→c−

E[Di ∣Xi=x]
= ... = E[Y 1

i − Y 0
i ∣Xi = c]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
LATE at the cutoff

Estimator Fuzzy RD leads naturally to a simple 2SLS estimation strategy. The 2SLS estimator β̂2SLS is
obtained through the two-step procedure:

1st stage: Di = δ + γ.Zi + f(Xi) + ui Ô⇒ D̂i = Ê[Di∣Xi]
2nd stage: Yi = α + β.D̂i + f(Xi) + ei

As before, one can allow for treatment effects varying with Xi by adding treatment-covariate interactions.
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Sharp RD

Fuzzy RD

(a) RD treatment assignment (sharp & fuzzy)

Xi

Yi

c

β̂RD

E[Y 0∣X]

E[Y 1∣X]

(b) RD treatment effect (sharp)
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3.3 DiD, DiDiD, Event study, SCM

Repeated observations allow for adjusting for unobserved confounders in linear models
Repeated observations over some dimension allow for adjusting for all the unobserved characteristics
that are constant across that dimension.
Say we have repeated observations for each individual i. Some characteristics stay constant for each
individual (e.g., their birth place...). If before running our linear model, we transform each variable
into its deviation from the group mean, i.e., we subtract the means for that individual, we remove any
variation explained by these constant characteristics. We say we “control for individual” as we get
rid of all the variation explained by the individual, i.e., the variation between individuals. We isolate
the variation within each individual. The within estimator compares each individual to themselves
(across the dimension over which we have the repeated observations).a

There are two standard estimation methods to do this:
• Option #1: De-meaning manually: Yit − Ȳi = α0 + β(Xit − X̄i) + uit

– This gets complicated if there are multiple dimensions along which to remove variation.
• Option #2: Adding “individual fixed effects,” i.e., a set of binary indicators as explanatory
variables, one for each individual: Yit = αi + βXit + vit

– This is easy to run with most statistical softwares, but can be computationally intensive as
it estimates an intercept for each individual (even though we won’t interpret them).

We can also include multiple sets of fixed effects to adjust for multiple sets of unobserved confounders.
What are the comparisons that would be averaged into β? For example, consider repeated cross-
sectional data of groups g = 1, ...,G over periods t = 1, ...., T :

• w. group FEs: β = average of TEs that compare group peers (among themselves and across t);
• w. period FEs: β = average of TEs that compare observations within the same period;
• w. both (“two-way fixed effects”): β = average of TEs identified from (i) variation within group
and (ii) variation within period.b

Note finally that as the OLS estimator is a weighted average of treatment effects, where weights are
proportional to the conditional variance of treatment, it will weight a lot more the units with large
within variation in treatment.

aWe could instead decide to de-mean at a higher level, e.g., group. We would then be comparing individuals in each
group only to other individuals in that group.

bEach comparison is relative to what is expected given that group, and given that year. Note that this is not the
same as “given that group that year” (such comparisons would rely on isolating variation within group-year, which
would be obtained with group-by-year fixed effects). Here, each of the “relative to” stands alone.

We consider in this section the setting of a treatment assigned at a certain time, and units observed before
and after the assignment, i.e., repeated observations over time. To estimate the causal effect of the event,
we need a model to estimate the counterfactual value (the unit’s outcome if the event had not occurred).
The sections below present three different models of that counterfactual:

• DiD, DiDiD Some units never get treated. Assuming that counterfactual trends (Y 0) of the treated
and untreated are parallel, we can use the control units to remove trends in Y in the treated. We
identify effects from both within and between variation.

• Event studies All units get treated. Assuming that a unit’s past value is a plausible counterfactual
value, we identify effects from within variation only.

• SCM Units are large aggregates, and most never get treated. Assuming parallel counterfactual
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trends across these individual units is unreasonable. But we can combine them to construct an optimal
synthetic unit that captures the counterfactual trajectory of the treated unit(s).

DiD

DGP Treatment assignment or exposure is a function of two dimensions: group (treatment/control) and
most commonly time (pre/post exposure at τ).34 We define the associated binary variables Gi ∶= 1{i ∈
treatment group} and Pt ∶= 1{t ∈ post period} = 1{t ≥ τ}.

− In a before/after comparison within the treatment group, the difference in Y could result from other
changes that occur during the time period (time effects)...

− In a treatment/control group comparison within the post period, the difference in Y could result from
permanent differences between the groups (time-invariant confounders)...

− We can remove both biases by comparing the change over time in Ȳ in the treatment group to the change
over time in Ȳ in the control group.

Identifying assumptions

(A1) Same or “parallel” counterfactual trends across groups: in the absence of treatment, both groups would
have experienced the same changes (pre → post) in outcomes Yit: E[Y 0

i1−Yi0 ∣ Gi=1] = E[Y 0
i1−Yi0 ∣ Gi=0].

This excludes selection into treatment.

(A2) The group compositions do not vary over time.

Estimand βDiD ∶= (E[Yi1 ∣ Gi=1]−E[Yi0 ∣ Gi=1])−(E[Yi1 ∣ Gi=0]−E[Yi0 ∣ Gi=0]) = ... = E [Y 1
i1 − Y 0

i1 ∣ Gi=1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ATET in post period

Estimator The OLS estimator β̂OLS of the following saturated regression consistently estimates βDiD:

Yit = α + βGGi + βPPt +β GiPt + eit

In this 2-groups 2-periods design, βDiD is equal to the treatment coefficient in a two-way fixed effect (TWFE)
regression with group and period fixed effects: Yit = λG + λP +β GiPt + uit or Yit = λG + λt +β GiPt + vit.

Best practices

• Support the assumption of parallel counterfactual trends by showing that pre-treatment trends cöıncide
(if we have data for multiple pre-periods). Estimate the following “event-study” or “dynamic TWFE”
regression model by OLS, and check that the {βt} for t < τ−1 equal 0:

yit = λG + λt + ∑
t≠τ−1

βtGi1{t} + eit

• The regression above also enables us to look at whether the TE accumulates over time: βt,t≥τ ↑ in t.

• If the composition of the groups changes over time, interact covariates X with Pt.

• As in any observational study, adjust for all other relevant pre-treatment variables.

34In the canonical DiD setting, the second dimension is time, but it need not be. Data could be grouped by cohort (e.g.,
year of birth) or other characteristics.
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Strengths & weaknesses

+ Repeated observations get rid of unobserved time-invariant confounders, creating comparable groups.

+ Pre-trends aren’t a problem (unlike in event-studies) as long as those of the two groups are parallel.

+ Identification only requires repeated observations, so repeated cross-sectional data suffice, as long as
the sample composition does not vary over time. Panel data satisfy this condition by construction.

Yi

t0 t1

E[Yit∣Di = 0]

β̂DiD

E[Yit∣Di = 1]

Figure 2: DiD treatment effect

DiDiD

DGP The treatment varies along a 3rd dimension or “subgroup,” e.g., gender, space... We define the
binary variable Si ∶= 1{i ∈ treatment in dimension #3}.

Identifying assumptions

(A1) Same counterfactual trends across groups subgroups: in the absence of treatment, the difference in
subgroups would have experienced the same changes (pre → post) in outcomes:

E [Y 0
i1−Yi0 ∣ G1, S1] −E [Y 0

i1−Yi0 ∣ G1, S0] = E [Y 0
i1−Yi0 ∣ G0, S1] −E [Y 0

i1−Yi0 ∣ G0, S0]

(A2) The subgroup compositions do not vary over time.

Estimand
βDiDiD ∶= [(ȲG1S1P1 − ȲG1S1P0

) − (ȲG0S1P1 − ȲG0S1P0
)] − [(ȲG1S0P1 − ȲG1S0P0

) − (ȲG0S0P1 − ȲG0S0P0
)]

= ... = E [Y 1
i1 − Y 0

i1 ∣ Gi=1, Si=1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ATET in post period

Estimator The OLS estimator β̂OLS of the following regression consistently estimates βDiDiD:

Yit = α + βGGi + βSSi + βPPt + βGSGiSi + βGPGiPt + βPSPtSi +β GiSiPt + eit
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Best practices

• A triple difference makes for a very specific control group. Before doing an DiDiD, one should explain
why a double difference isn’t satisfactory (i.e., why the control and treatment groups in the double
difference may have different counterfactual trends), and even the first difference.

• As in any observational study, adjust for all other relevant pre-treatment variables.

Strengths & weaknesses

+ A triple difference can difference out more confounding elements, hence it is harder to find confounders.

– It requires more data and variation.

ADD: example and figure for DiDiD: see Joan Llull ’s lecture notes: http://pareto.uab.cat/jllull/

BGSE_Quantit_Meth/Class_Notes_QSMII_Chapter_7.pdf

Event study

DGP We want to estimate the causal effect of an event, which occurs for all units in the population but
at different times τi, on some outcome Y . Treatment assignment is a function of the period (pre/post τi).

Identifying assumptions

(A1) Exogeneity (random timing): the event is unpredictable, and not a result of the outcome Y . We can
then reasonably use the group’s past value to construct its counterfactual post-event value.

(A2) The sample composition does not vary over time.

Estimand βES ∶= E[Yit ∣ t=τi]−E[Yit ∣ t=τi−1] = E[Y 1
i,τi
]−E [Yi,τi−1] = E[Y 1

i,τi
]−E [Y 0

i,τi
] = E[Y 1

iτi
− Y 0

iτi
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ATET

Estimator The OLS estimator β̂OLS of the following regression (on a set of binary variables before and
after the event, i.e., time fixed effects — omitting the period before the event to normalize it as 0, s.t. the
normalized “event time” variable captures the number of periods since treatment) consistently estimates βES:

Yit =
τi−2

∑
t′=−K

[β′t 1{t = t′}] +β 1{t = τi} +
L

∑
t′=τi+1

[β′t 1{t = t′}] + eit

This specification can be called “dynamic,” in that the coefficients {βt} capture dynamic treatment effects:
the effects are allowed to change non-parametrically over time since the event.

Best practices

• Plot/report all βts, to check that they are not changing up to the event. A change would suggest
the presence of pre-trends, which makes it hard to interpret the event (unless there is a sharp trend
discontinuity) as they suggest some endogeneity of D.

• As in any observational study, adjust for all relevant pre-treatment variables.

Strengths & weaknesses

– It is difficult to rule out other things changing at the same time, i.e., unobserved confounders (time-
varying unobservables correlated with both Dit and Yit).
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△! Two-Way Fixed Effects estimators can be unreliable with heterogeneous TEs

Assuming identification assumptions hold, the estimation of a weighted ATET is very simple in the ideal
setting of a binary D that only switches on, and is assigned at the same time for all units. However, in more
complicated settings (where D is nonbinary, staggered, switches off...), naive extensions of these methods
estimate quantities that can be very far from an informative ATET.

Let’s assume that the parallel trends assumption holds. We saw that in the canonical 2-groups 2-periods
setting, β̂DiD is equal to the two-way fixed effects (TWFE) estimator β̂FE; both estimators are unbiased for
the ATET. However, in designs with more variety in exposure to treatment (with many groups and periods,
staggered treatment, treatment switching off, non-binary treatments...), the TWFE estimator may be biased
if TEs are not constant across groups or over time (e.g., a policy becoming more or less effective).

I.e., even with all confounders accounted for, β̂FE is not robust to heterogeneity of TEs across groups or
periods.

1. Source of the problem

Consider the TWFE regression model: Yit = αg[i] + γt + βFEDg[i]t + eg[i]t, for unit i in group g at

time t. β̂FE is a specific weighted sum of the ATEs in each treated (g,t) cell, with each weight wgt

proportional to and of the same sign as N1(Dgt −Dg. −D.t +D..) and ∑g,twgt = 1,35 such that in

general, E[β̂FE] ≠ βATET (de Chaisemartin and D’Haultfœuille, 2020):

βATET = E
⎡⎢⎢⎢⎢⎣
∑

(gt)∶Dgt=1

Ngt

N1
ATEgt

⎤⎥⎥⎥⎥⎦
, E[β̂FE] = E

⎡⎢⎢⎢⎢⎣
∑

(gt)∶Dgt=1

Ngt

N1
wgt ATEgt

⎤⎥⎥⎥⎥⎦

✓ In the textbook case (D is binary, only switches on, and is assigned at the same time for everyone),

Dgt −Dg. −D.t +D.. is constant across (g,t) cells, therefore β̂FE is unbiased for the ATET.

✗ In more complicated settings, the wgt vary. Then, heterogeneity in ATEgt leads to a biased β̂FE.

Some wgt may even be negative (i.e., β̂FE may not even identify a convex combination of TEs).36

One-way FE regressions may similarly be biased for the ATE, but unlike TWFE regressions they
always estimate a convex combination of TEs.

– When D is binary, staggered, in static TWFE regressions, β̂FE is a weighted average of all
possible 2-group, 2-period DiD estimators in the data, where each weight is a function of the
sample size and the subsample variance of treatment (Goodman-Bacon, 2021).37 Some of
these 2x2 DiDs misuse an early-treated group as control for a late-treated group, which may
induce negative weights if the TE varies over time.

– When D isn’t binary, βFE may leverage another type of comparison: it may compare the
outcome evolution of a group whose treatment increases more to the outcome evolution of a
group whose treatment increases less.

– When D is binary, staggered, in dynamic TWFE regressions, the coefficient on a given lead
or lag can be contaminated by effects from other periods, and thus is not a valid estimate of

35Where Ngt is the number of observations in cell (g,t); N1 is the total number of treated observations; a dot subscript means
the variable’s average is taken over the given dimension; and while the original demonstration considers a binary treatment,

the results “apply to any ordered treatment” (de Chaisemartin and D’Haultfœuille, 2022), s.t. ATEgt =
Y

Dgt
gt −Y 0

gt

Dgt
. Precisely,

wgt =
ẽgt

∑(gt)∶Dgt=1
ẽgtNgt/N1

, where ẽgt is the residual in the regression of Dgt on group and period FEs.

36This can even lead to a negative coefficient β̂FE while the true ATEs are positive for everyone. Ex: 1.5 × 1 − 0.5 × 4 = −0.5.
37OLS will give more weight to subgroups where the FE-adjusted treatment dummy varies more. As a result, the timing of

a unit’s treatment will determine its weight in the regression. If i is treated very early or very late, then it will have very little
variation in treatment across the period (it is 0 almost the whole time, or 1 almost the whole time) and so will receive little
weight. Note that weighting by treatment-variance is how OLS handles heterogeneity all the time — see section 2.1.2.
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a dynamic treatment effect TE heterogeneity, and apparent pre-trends can misleadingly arise
solely from TE heterogeneity (Sun and Abraham, 2021).

Wooldridge (2021) highlights that the cause of the problem is not the TWFE estimator per se, but its
misuse: it is applied to a restrictive model, namely, which does not allow for heterogeneity in the TE.

2. Alternatives

de Chaisemartin and D’Haultfœuille (2022) summarizes the fast-growing literature on this problem,
and highlights:

• Diagnosis tools

▸ The twowayfeweights command (in R and Stata) computes the weights
Ngt

N1
wgt.

▸ The bacondecomp command (in R and Stata) computes the 2x2 DiD estimators and weights
entering in βFE, in the case of a binary staggered D.

• Alternative estimators
Ex: Wooldridge (2021) proposes an “extended TWFE” approach (based on the random-effects
Mundlak estimator) which notably interacts the treatment indicator with time and/or group-time
dummies to allow TEs to change across groups or periods.

More generally, since the source of the ‘problem’ is the heterogeneity in TE, we should be
thinking about how to allow for heterogeneity in our model.

SCM

DGP An event or intervention occurs at the level of aggregate entities (e.g., cities, countries) at time t = τ .
A single unit j = 1 is affected, the other units j = 2, ..., J + 1 are unaffected. As the units of observation
are a small number of aggregate entities, no single unaffected unit may provide a good comparison for the
exposed unit. But a combination of unaffected units could. For each unit j, we observe a set of k predictors
of the outcome, X1j , ...,Xkj which include pre-intervention values of Yjt and are themselves unaffected by
the intervention.

We consider a “synthetic control unit,” which is a weighted average of the different J units in the donor
pool that should reproduce the behavior of Y for the treated unit in the absence of the treatment. We call
“synthetic control” the set of these optimal weights W ∗ ∶= (w∗2 , ...w∗J+1).

Identifying assumption

(A) The synthetic control unit reproduces the behavior of Y for the treated unit 1 in the absence of the
treatment.

Estimand βSCM,t ∶= Y1t − ŶSU,t = Y 1
1t − Y 0

1t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TET

Estimator The synthetic control estimator:

∀ t, β̂SCM,t ∶= Y1t −
J+1

∑
j=2

wjYjt

△! The synthetic control estimator is not regression-based, so we don’t also get a standard error / p-
value. After estimating the treatment effect, we need to do additional steps to generate inferences from that
estimate.
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Best practices / Steps

1. Design phase: Creating the comparison unit = determining the optimal weights W ∗

• Common approach: The weights should minimize the distance between the treated unit and the
synthetic unit, in terms of ability of predicting the post-treatment outcomes. We therefore cal-
culate the weights that minimize the distance between the vector of pre-treatment characteristics
for the treated unit X1 and the matrix of pre-treatment characteristics for the untreated units
X0:

w∗j (V ) ∶= argmin
wj

∣∣X1 −X0W ∣∣ =
√
(X1 −X0W )′V (X1 −X0W )

s.t. wj ≥ 0 ∀j = 2, ..., J + 1
∑wj = 1

where Vk×k represents the relative importance (weight) to give to each variable as a predictor of
Y 0. For example, if Vk×k is diagonal with elements v1, ...vk, the minimization function simplifies

to w∗j ∶= argmin
wj

∑k
m=1 vm(X1m −∑J+1

j=2 wjXjm)
2

.

To solve this, first, we need to choose the set of predictors X1, ...,Xk and the matrix V .

– Choosing X1, ...Xk and V should be based on their predictive value. One often-used selection
criterion is the mean squared prediction error (MSPE). One divides the pre-treatment period
into an initial training period and a subsequent validation period, computes SC weights using
the training data, and evaluates the predictive power of the resulting synthetic control using
the validation data, by computing the MSPE. One then chooses the synthetic control W (V )
that minimizes this MSPE w.r.t. Y1,t<τ , for some set of pre-treatment periods: MSPE =

∑t<τ (Y1t −w2Y2t − ... −wJ+1YJ+1,t)
2

.

• Other approaches include best subset regression or LASSO and elastic nets methods, which per-
form better in settings with a large number of potential control units (see Doudchenko and Imbens
(2016)).

2. Estimation phase

• Report the weights w∗1 , ...,w
∗
J+1.

• Check that the synthetic unit has values similar to the treated unit across all matching variables.

• Show robustness to:

(i) the choice of units j = 2, ..., J + 1 in the donor pool. Ex: leave-one-out re-analysis: take from
the sample one-at-a-time each of the units that contribute to the synthetic control, and check
that the estimate is robust to the exclusion of any particular unit.

(ii) the choice of predictors X1, ...Xk.

3. Inference phase: Is the treatment effect on the exposed unit “significant”? I.e., is it in the tails
(extreme) of some distribution of treatment effects?

• Compute the exact p-value through placebo-based inference

(a) Generate a distribution of placebo effects by iteratively reassigning the treatment to each
untreated unit, and applying the SCM.

(b) Choose a test statistic, and calculate it for each placebo. Abadie et al. (2010) recommends
calculating the ratio of the post-treatment root mean squared prediction error (RMSPE) to
the pre-treatment RMSPE.
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(c) Sort the values of this statistic in descending order.

(d) Calculate the p-value (the treatment unit’s statistic in the distribution) as p ∶= rank
total=J

.

One can plot a histogram of the statistics, and mark the treatment unit/group in the dis-
tribution to show the exact p-value associated with the model. One can also plot all the
placebos, and highlight the treated unit’s trajectory.

• Construct confidence intervals through test inversion (see Firpo and Possebom (2018))

Strengths & weaknesses

+ The SCM formalizes the creation of a comparison unit using a data-driven procedure. The “synthetic
unit” is an optimally estimated counterfactual to the unit that received the treatment. The approach
combines elements from matching and DiD techniques.

+ Transparency

– of the fit: By showing the actual discrepancy between the treated unit and the convex combination
of untreated units: for each of the X chosen (= balance table), and in terms of pre-intervention
outcomes (through the graph of the two times series).

– of the counterfactual: The weights chosen make explicit what each unit is contributing to the
counterfactual. Whereas regression also weights the data, but one cannot see the weights.

+ It is a generalization of DiD, which relaxes the parallel trends assumption, by instead building an
artificial control to have the best possible pre-trend.

+ It precludes extrapolation beyond the support of the data (which can occur in extreme situations with
regression), by restricting the weights to be non-negative and to sum to 1.

– Requires additional steps to generate inferences.

△! SC doesn’t solve the problem of subjective researcher bias. Through the choice of the covariates
themselves, one can in principle select different weights.38

Extensions

• Synthetic Difference-in-Differences (Arkhangelsky et al., 2021)

• More recently, the SCM has been applied to settings with a large number of units.

• Relaxing functional form assumptions. Ex: it isn’t clear whether one should assume that it is the
percentage change or the absolute change in the level of average outcomes over time that would have
been the same across groups in the absence of treatment. For the case of repeated cross-sectional data,
Athey and Imbens (2006) proposes a nonlinear version of the difference-in-differences model, called
“changes-in-changes,” which does not rely on functional form assumptions, while still allowing the
effects of time and treatment to vary systematically across individuals. It provides the distribution of
outcomes, beyond the average effect of the treatment itself.

38Ferman et al. (2020) shows there remains possibilities for specification searching in the SC method... The authors consider a
variety of commonly used SC specifications (e.g., all pre-treatment y values, the first 3/4 of the pre-treatment y values...), run the
randomization inference test to calculate empirical p-values, and find that the probability of falsely rejecting the null in at least
one specification for a 5% significance test can be as high as 14%. I.e., it is theoretically possible to “hack” the analysis in order to
find statistical significance that suits one’s priors, by specification searching. This happens even when the number of pre-periods
is very high. Restricting the number of pre-periods (as an attempt to limit the ability to conduct an endogenous specification
search) isn’t a good solution either as it diminishes control for unobserved confounders (it misallocates more weights). Ô⇒
SC doesn’t remove subjective researcher bias, despite creating weights based on a data-driven optimization algorithm. The
weights are optimal in that they uniquely minimize the distance function, but the distance function is endogenously chosen by
the researcher. It is recommended to present multiple results under a variety of commonly specified specifications, instead of
one specification which may be the cherry-picked result.
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Summary of canonical identification strategies, and regression-based consistent estimators

Method Identifying assumptions Estimand β & corresponding TE Chosen estimator β̂ Strengths / Weaknesses

RCT (A) independence
β ∶= E[Yi∣Di=1] − E[Yi∣Di=0] = ... = E[Y 1

i − Y 0
i ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ATE

β̂OLS of the regression Yit = α +β Di + eit.
Consistent and unbiased.

+ Random assignment guar-
antees (A)

⇒ RCT = “gold standard”

Selection
on
obser-
vables

(A1) conditional indepen-
dence

(A2) overlap

β(x) ∶= E[Yi∣Di=1,Xi=x] − E[Yi∣Di=0,Xi=x]

= ... = E[Y 1
i − Y 0

i ∣Di=1,Xi=x]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CATE, x

β ∶= ∑x
w(x)

∑x w(x)
β(x), w(x) ∶= V[Di∣Xi=x]P (Xi=x)

β̂OLS of the regression Yit = α+β Di+f(Xi)+
eit.
Consistent, unbiased if f() is correct.

– hard to know all con-
founders are observed

– need globally accurate as-
sumption of the forms f() of
Y 1
i ∣Xi, Y

0
i ∣Xi

IV

Exogenous variation in D
induced by Z.

(A1) independence

(A2) exclusion restriction

(A3) relevance

(A4) monotonicity

βIV ∶=
cov[Yi, Zi]
cov[Di, Zi]

= ...

= E[Yi∣Zi=1] − E[Yi∣Zi=0]
E[Di∣Zi=1] − E[Di∣Zi=0]

∶ “Wald estimand”

= ... = E[Y 1
i − Y 0

i ∣D1
i =1,D0

i =0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

LATE, compliers

β̂W ∶=
ĉov[Yi, Zi]
ĉov[Di, Zi]

= ... = numerically equiva-

lent to β̂2SLS of the 2-stage regression

Di = δ + γ.Zi + vi
Yi = α̃ + β̃.D̂i + ei

Consistent, biased, bias ↓ w. Z strength

+ reliable exogenous variation

– less efficient than β̂OLS if in-
strument is weak

Sharp
RD

Discontinuity in treatment
assignment based on a cut-
off in X.

(A1) local continuity

(A2) relevance

βRD ∶= lim
x→c+

E[Yi ∣Xi=x] − lim
x→c−

E[Yi ∣Xi=x]

= ... = E[Y 1
i − Y 0

i ∣Xi=c]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
LATE at the cutoff

β̂OLS of the regression Yi = αl+βDi+f(Xi)+
ei, with choice of f():

– local linear regression
– polynomial regression

Consistent, biased, bias ↑ w. bandwidth

+ akin to a local randomized
experiment

+ rather testable assumptions

– risks being underpowered

– maybe low external validity

Fuzzy
RD

Discontinuity in
P(treatment assignment)
based on a cutoff in X.

(A1) local continuity

(A2) relevance

βRD ∶=
lim
x→c+

E[Yi∣Xi=x] − lim
x→c−

E[Yi∣Xi=x]

lim
x→c+

E[Di∣Xi=x] − lim
x→c−

E[Di∣Xi=x]

= ... = E[Y 1
i − Y 0

i ∣Xi = c]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
LATE at the cutoff

β̂2SLS of the 2-stage regression

Di = δ + γZi + f(Xi) + ui

Yi = α +βD̂i + f(Xi) + ei
w. choice of f(). Consistent, biased.

Combination of the strengths
and weaknesses of IV and
Sharp RD

DiD

(A1) same counterfactual
trends across groups

(A2) same group composi-
tions over time

βDiD ∶= (ȲG1P1 − ȲG1P0) − (ȲG0P1 − ȲG0P0)

= ... = E[Y 1
i1 − Y 0

i1 ∣ Gi=1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ATET

β̂OLS of the regression Yit = β GiPt + λG +
λP + eit

Consistent.

+ rules out unobserved time-
invariant confounders

DiDiD

(A1) same counterfactual
trends across sub-
groups

(A2) same subgroup com-
positions over time

βDiDiD ∶= [(ȲG1S1P1−ȲG1S1P0) − (ȲG1S0P1−ȲG1S0P0)]

− [(ȲG0S1P1−ȲG0S1P0) − (ȲG0S0P1−ȲG0S0P0)]

= ... = E [Y 1
i1 − Y 0

i1 ∣ Gi=1, Si=1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ATET

β̂OLS of the regression Yit = β GiSiPt+λGS +
λGP + λPS + eit

Consistent.

+ differences out more poten-
tial confounders than in DiD

– requires more variation

Event-
study

(A1) random event timing

(A2) same sample composi-
tion over time

βES ∶= E [Yit ∣ t=τ] − E [Yit ∣ t=τ−1]

= ... = E [Y 1
iτ − Y 0

iτ ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ATET

β̂OLS of the regression Yit = β 1{τ} +
∑t≠{τ−1,τ} [βt1{t}] + eit

Consistent.

+ flexible

– difficult to rule out unob-
served confounders



4 Analysis stage: steps for stronger causal inferences

4.1 Identification strategies only provide so much

Recall the core motivation for identification strategies:

We look for identification strategies that suggest that an independence assumption holds, as it
enables us to recover un unbiased estimator of an average treatment effect:

• if IA, the regression of Y on D gives an unbiased estimator of the ATET (e.g., in an RCT);
• if��IA CIA + we know the correct functional form f() w.r.t. the confounders X, the regression
of Y on D and f(X) gives an unbiased estimator of the ATET;

• in either case, if we instrument D by a valid Z, IV regression gives an unbiased estimator of
a LATE.

All that identification strategies buy us is the above. This remains limited, in at least 3 important ways:

1. In observational studies, estimating causal effects relies on (i) the treatment assignment mechanism and
(ii) the conditional distribution of Y ∣D,X or “response surface.” With the��IA CIA, i.e., if ignorability
holds, then we don’t need to model the treatment assignment process, unbiased inferences rely only on
correct modeling of the response surfaces E[Y ∣D=1,X] and E[Y ∣D=0,X]; in other words, on correctly
specifying the functional form w.r.t. (D,X).

The problem is that we don’t ever know this f() for sure (especially if Y is not linearly related to X, if
the distribution of X is quite different across treatment groups, if there are many Xs...)39, so we don’t
want to have to rely on f()...40 We can see three ways to address this estimation problem:

• Focusing on appropriately controlling for the treatment assignment mechanism (e.g., with match-
ing or weighting approaches): if the treatment assignment mechanism is properly specified we
don’t have to model the response surface at all (just as in a randomized experiment). This
means striving to avoid overlap imbalance in our data (there, we are forced to rely on model
specification instead of direct support from the data, so inferences would be vulnerable to model
misspecification).

• Focusing on correctly specifying the response surface: then we don’t have to worry about correctly
specifying the assignment mechanism.

• Modeling both the treatment assignment mechanism and the response surface, to increase ro-
bustness (and potentially efficiency). This corresponds to the literature on “doubly-robust” semi-
parametric estimators (Hill, 2011, section 2). These methods use estimates of the conditional
outcome means as well as estimates of the propensity score, and are found to provide consis-
tency as long as either the treatment assignment mechanism or the response surface is correctly
specified. See Imbens and Wooldridge (2009, sec. 5.6).

2. An unbiased estimator θ̂ means that its distribution fθ̂ (over possible trials for the given sample size) is
correctly centered around the true value of the estimand θ. This does not guarantee that its realization
for any particular study is close to that center value — especially with a small sample size. We might
therefore want to:

39Recall Angrist and Pischke (2008)’s argument that linear regression is always legitimate as it (Xβ) provides the best linear
approximation to the CEF E[Yi∣Di,Xi]. However, if the CEF is very nonlinear, then this approximation could be terrible!
Actually, even if local linearity of the regression function is a reasonable approximation, unless the linear approximation is
globally accurate, regression may lead to severe biases (Imbens and Wooldridge, 2009).

40One way to avoid possible misspecification would be to saturate the model, i.e., discretize each variable in X using indicator
variables, and include a separate parameter for every possible combination of values of this set of regressors. This is rarely
tractable in practice, notably with continuous X.
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(a) adjust as much as possible for potential imbalance between the groups, using pre-treatment data;
(b) consider another property: efficiency (i.e., reduce the width of the estimator’s distribution).

3. What knowledge is generated from an estimate of the ATET? Reduced forms are generally — this
document is no exception — motivated by having set the RCT as gold standard. In an RCT, the
treatment variable represents an intervention, and the average effect of that intervention might very
well be the knowledge desired. However, in other contexts, estimating the magnitude of an effect
without identifying its underlying mechanisms might be considerably less informative (e.g., the impact
of climate extremes on social instability).

This section suggests what can be done at the analysis stage (i.e., post-design, given a fixed dataset) to try
to address these limitations, and generate more insightful inferences. Specifically:

1. pre-estimation: restructuring the data to improve overlap and balance w.r.t. confounders;

2. at the estimation stage: including the right covariates, and allowing for TE heterogeneity;

3. post-estimation: checking assumptions and considering external validity.

4.2 Pre-estimation: Restructuring

Causal inference requires the units in the treatment group to be comparable to those in the control group
w.r.t. confounders X. There are two forms of departures from comparability:

• Incomplete overlap: the support of the distribution of X differs across the groups. Some observations
have no empirical counterfactuals.
↪ In these zones of no overlap, the model is forced to extrapolate, and inferences are based entirely on
modeling assumptions instead of data.

• Imbalance: the shape of the distribution of X differs across the groups (e.g., different means, same
mean but different skews).
↪ The simple difference of group averages is not, in general, a reliable estimate of the ATET.

Restructuring to balance the observed confounders The less the treatment and control groups have
overlap and balance w.r.t. confounders X, the more inferences rely on the model instead of on data, and
so aren’t robust to model misspecification. On the contrary, if the distributions of X are similar across the
groups, then, even if we misspecify the form of the relationship, we should still get a reasonable estimate
of the TE (Gelman et al., 2020). To alleviate this concern of needing to specify the model correctly, we
can restructure our sample prior to analysis, namely match groups to exhibit balance and overlap w.r.t. the
confounders X (i.e., make the sample resemble one from a randomized trial: D ⊥⊥X). As the estimand of
interest is the ATE on the treated, we want our full sample to be representative of the treatment group. So
we keep our treatment group intact, and restructure the control group to look like the treatment group.

△! Matching provides more overlap and balance, not identification. For matching to be able to capture by
itself a causal effect, all the difference between the groups would need to be captured by observed X. This
assumption of “selection on observables” is very strong, and not testable. Therefore matching is not an
alternative to a design-based method.41 We need exogenous variation to believe the CIA. Matching is an
adjustment strategy, not an identification strategy.

With42
⎧⎪⎪⎨⎪⎪⎩

(i) CIA

(ii) balance & overlap w.r.t. X
Ô⇒ the difference in Ȳ is an unbiased estimator of the ATET.

41Methods in which a feature in the setting approximates a randomized experiment, and we fit a model that adjusts for
potential confounders: RDs, IVs... (the methods described in the previous section).

42In other words, identification strategies and econometrics (matching, regression) are complements in the production of
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Within the context of an adjustment strategy, one can nonetheless use matching in two different ways:

• In place of regression: matching as estimation method
The ‘regression with controls’ estimand and the non-parametric ‘covariate-matching’ estimand are two
different ways of balancing the Xs (Angrist and Pischke, 2008). In practice, the matching estimator is
obtained by making comparisons for cells with the same X values, computing the difference in their
Y s, and averaging these differences in some way.
However, while neither the regression nor the matching estimands give any weight to covariate cells that
don’t have both treated and control observations (i.e., both estimands impose common support), the
regression and matching estimators use modeling assumptions that implicitly involve extrapolation
across cells, so cells without both treated and control observations can end up contributing to the
estimates by extrapolation. Using matching as an estimation method therefore does not resolve the
concerns with lack of overlap. In addition, estimating the standard errors of matching estimates isn’t
straightforward.

• On top of regression: matching as preprocessing method
2-step process: do matching to get comparable groups, and then do regression for further adjustment
and for modeling interactions. Matching as a nonparametric preprocessing procedure is used to restruc-
ture the original sample before statistical analysis, to reduce reliance on the parametric assumptions
of the subsequent regression model (Gelman et al., 2020; Ho et al., 2007).

Common distance metrics One can match units rather easily with one continuous confounder X (choos-
ing for each treated unit the control unit with the closest value of X), or even one binary X1 and one contin-
uous X2 (e.g., stratifying within subgroups defined by X1 and then matching on X2 within each subgroup).
But it quickly gets complicated with more confounding covariates. One alternative is to define a univariate
distance metric as a function of the Xs, and match each treated unit to its nearest control unit:

▸ Mahalanobis distance
We define a distance metric that can include multiple dimensions of “closeness” between observations:
dij ∶=

√
(Xi −Xj)′Σ−1X (Xi −Xj), where ΣX is the sample covariance matrix. This distance metric is

scale-invariant and accounts for the correlation structure of the Xs.

▸ Propensity score
We can reduce the dimensionality to 1 by computing a unit’s predicted probability of getting treated
or “propensity score” p̂i ∶= P(Di = 1∣Xi) from the Xs, and use as distance metric dij ∶= ∣p̂i − p̂j ∣.

The appeal of the propensity score p(X) is that if the Xs included in the propensity score model are
sufficient to satisfy ignorability, then p(X) is also sufficient to satisfy ignorability. I.e., appropriate
conditioning on p(X) (for instance with matching or weighting by functions of it) is sufficient to recover
unbiased estimator of a TE. If Y 1, Y 0 ⊥⊥X, then Y 1, Y 0 ⊥⊥ p(X).
Add Rosenbaum and Rubin (1983): propensity score approach & theorem: effectively adjusts for all
bias due to observable confounders.

Algorithm for propensity score matching:

causal estimates. Some independence assumption is needed to give estimates (whether matching estimates or regression coeffi-
cients) a causal interpretation.
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1. Propensity score model: fit a logistic regression of Di on {Xis}, and predict p̂i ∶= P(Di = 1∣Xi).
2. Match each treated unit to its nearest control unit(s) using p̂i. Choose a matching algorithm:

with/without replacement;a coarse (stratifying the sample into quintile blocks of p̂i, e.g.,
20%, and matching within block by comparing means of treatment observations X̄1 to control
observations X̄0)...

3. Diagnose: assess overlap and balance. If balance is inadequate, redo steps 1-3, trying a less
parsimonious model (add interactions, higher order terms of covariates...) or a less coarse
matching algorithm.

– Overlap: plot overlapping histograms w.r.t. the estimated propensity score.
– Balance: compare the distribution of each X across the groups, before vs after matching.

4. Estimate the ATET using the restructured data. As aforementioned, one can elect to either:
– estimate the ATET as a weighted difference in means (i.e., compute a matching estima-

tor). Example: Almond et al. (2005) presents both an OLS and a matching estimator.
– fit a regression model

∗ on D, p̂ and D × p̂. See Doug Almond’s “Algorithm for Estimating the Propensity
Score” pdf (from Ken Chay’s 2001 UC Berkeley econometrics class)

∗ on D and all Xs using the restructured data. Gelman et al. (2020, ch. 20): “This
gives us an additional chance to adjust for differences in distributions of X that
typically remain between the groups (to decrease bias and increase efficiency). The
overlap and balance created by the matching should make this model more robust
to potential model misspecification; that is, even if this model isn’t quite right (for
example, excluding a key interaction,or assuming linearity when the underlying re-
lation is strongly nonlinear) our coefficient estimate should still be close to correct,
conditional on ignorability being satisfied.”b

aMatching with vs without replacement is akin to a bias-variance trade-off: matching with replacement should
yield better matches on average, therefore better balance and less biased TE estimators; however, it can result in
over-using certain units or ignoring other close matches, i.e., missing out on important information in the data, and
potentially increase the variance of the estimates.

b△! The standard errors from this regression are not technically correct, as: (1) matching induces correlation
among the matched observations — the regression model, however, if correctly specified, should account for this by
including the variables used to match; (2) the fact that the propensity score has been estimated from the data is not
reflected in the calculations (Gelman et al., 2020, p. 404).

4.3 Estimation: Regression controls and TE heterogeneity

Required/forbidden regression controls (for bias) For our TE estimator to be unbiased, the identi-
fication strategy commands us to:

✓ adjust for all confounding, or more precisely, block all back-door paths, by adjusting for one variable
along each path.43

△! More controls is not always better! Controlling for some confounding paths but not all can some-
times make the situation worse by amplifying the bias from the omitted confounder.
Middleton et al. (2016) demonstrates “bias amplification” in the simple case of two confounders, which
can easily be extended. Suppose the true model is Yi = α + βDi + δAi + γBi + ei, where A and B are
confounders, but only A is observed, and A ⊥⊥B for simplicity. Should we include A?

– Omitting A and B, i.e., regressing Y only on D, yields the bias: β̂Y∣D − β = δ(D′D)−1D′A +
γ(D′D)−1D′B ∶= bA + bB

43Technically, “reverse causality paths” D ← ...← Y are also back-door paths, so they should be blocked too. For simplicity,
we consider that there are none, the only back-door paths are therefore confounding paths.
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– Omitting B and including A yields the bias: β̂Y∣D,A −β = 1
1−R2

D∣A

bB (where R2
D∣A is the coefficient

of determination in the regression of D on A, i.e., the amount of variation in D explained by A).

→ When B is omitted, including A will actually increase net bias iff ∣bA + bB ∣ > 1
1−R2

D∣A

∣bB ∣

Instruments are the canonical example of pure bias amplifiers: as δ = 0, bA = 0, so conditioning
on them can only hurt. Middleton et al. (2016) further shows that group fixed effects can be pure
bias amplifiers, even though they do not act as instruments and they absorb heterogeneity in (and
are causally related to) Y . I.e., while they are commonly thought as a harmless44 way to account
for all group-level confounding, FEs can be bias increasing in some contexts — e.g., when the
group-level structure in Y does not covary with the group-level structure in D.

✗ not adjust for post-treatment variables that may be affected by the treatment (“intermediate out-
comes”) and that are also correlated with Y (whether determined by Y—colliders—or determining
Y—mediators). This would induce bias in our estimate of the total causal effect.45

Optional good/bad regression controls (for efficiency) Separately from the identification strategy,
which other covariates should we adjust for?
As a general rule of thumb, among variables which do not interfere with identification, adjusting for deter-
minants of Y may increase the efficiency of the estimator β̂, whereas determinants of D may reduce it.46

Cinelli et al. (2021) provides a detailed and nuanced description of each case, with DAGs. Generally:

 Adjusting for pre-treatment covariates that have a strong association with Y
(whether a direct association like Z1, or a mediated association like Z2) can
reduce the residual variance (the unexplained variation in Y ). This will lower the

standard error of β̂, even though these covariates are uncorrelated with D. This
applies also to data from a completely randomized experiment.

D M Y

Z2 Z1

 Adjusting for determinants ofD will instead reduce the variation of D and so may
reduce the precision of β̂ in finite samples, i.e., increase its asymptotic variance.

D Y

Z

Given all this mess, should we even consider controlling at all, wouldn’t regressing only on D be safer? Rubin
(1974) states: “the investigator should be prepared to consider the possible effect of other variables besides
those explicit in the experiment. Often additional variables will be ones that the investigator considers relevant
because they may causally affect Y ; therefore, he may want to adjust the estimate ∆Ȳ and significance levels
of hypotheses to reflect the values of these variables in the study. [...] An investigator who refuses to consider
any additional variables is in fact saying that he does not care if ∆Ȳ is a bad estimate of the typical causal
effect of the treatment but instead is satisfied with mathematical properties [i.e., unbiasedness] of the process
by which he calculated it.” Gelman et al. (2020, p.368) further nuances the dichotomy between benefits
in terms of bias vs. precision: “Under a clean randomization, adjusting for pre-treatment predictors in this
way does not change what we are estimating. However, if the predictor has a strong association with the
outcome it can help to bring each estimate closer (on average) to the truth, and if the randomization was
less than pristine, the addition of predictors to the equation may help us adjust for systematically unbalanced

44Their harmlessness refers to bias, while they may be inefficient. Fixed effects lead to comparing much smaller changes
than if we were to look at the entire range of data. If variables are measured rather imprecisely, we will be removing a lot
of the signal but not any of the noise, therefore the power of the analysis goes down. See http://www.g-feed.com/2012/12/

the-good-and-bad-of-fixed-effects.html
45There are sometimes things we can learn from a regression with bad controls; see http://www.g-feed.com/2012/10/

bad-control.html (last ¶), referring to Maccini and Yang (2009).
46Increasing the efficiency or precision of the estimator β̂ means reducing its asymptotic variance, and so its standard error.

As the distribution of the estimator changes, the value of its central point — our estimate — may also change slightly.
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characteristics across groups. Thus, this strategy has the potential to adjust for both random and systematic
differences between the treatment and control groups (that is, to reduce both variance and bias), as long as
these differences are characterized by differences in the pre-test.”

TE heterogeneity We expect some heterogeneity in the treatment effect β.47 We could therefore relax
the overly restrictive modeling assumption of a constant TE, and look into its variation. Options include:

• If we expect β to vary with the level of a covariate X, we can interact D with that X.48 Gelman et al.
(2020) recommends doing that notably with the Xs included as controls that have large estimated
coefficients.

• If our data are hierarchical, i.e., there are groups g[i], we can let β vary by group, and address the
between-group variation by pooling the βg’s in some way:

– Partial pooling. The slope coefficients: 1. vary by group, 2. are themselves given a probability
model: βg ∼ F(µβ , σβ). I.e., we model the variation between groups. This 2nd (higher: group)-
level model can have predictors or not, and has parameters of its own (the “hyperparameters”
of the full model) which are also estimated from data. The group-level βgs are partially pooled
toward their group-level mean µβ , by an amount that depends on the sample size of each group
and on σβ , which is estimated from the data.49

Partial pooling is a compromise between the arbitrary extremes of full pooling (σβ → 0) and no
pooling (σβ →∞):

– Full pooling. We ignore variation between groups and impose βg = β.

– No pooling. We estimate independent βg (by interacting D with group dummies), with the risk
of overstating the variation between groups, i.e., overfitting the data.

△! Don’t overfit, regularize Adding predictors and interactions increases the risk of overfitting. There
are multiple ways/criteria to penalize complexity in linear regressions, regularize and select variables. Ex:

• Partial pooling (of intercepts and/or slopes)
• using priors (Bayesian inference)
• LASSO
• Elastic net regression: we minimize the sum of squared residuals plus a penalty term:

{βp} = argmin SSR + λ∑
p

[(1 − α)∣βp∣ + α∣βp∣2]

It overcomes the limitations of LASSO. If λ = 0, this is OLS; if α = 0, this is LASSO.
Suggestion by Suresh Naidu: how about reporting the robustness of the estimated TE to different
values of λ with LASSO — rather than arbitrary author-curated specifications across various columns
of a table?

47For simplicity, let’s assume that we are interested in average treatment effects, and so focus on variation in the first moment
(mean) of the outcome distribution. We could also consider TE variation as variation in the second moment (variance) or in
the overall outcome distribution (quantiles). Feller and Gelman (2015) provides some discussion of these cases.

48For continuous X, consider centering it, s.t. the treatment coefficient represents the TE for individuals with the mean X
score for the sample. Note that a problem when X is continuous X is that we rarely have a reason a priori to make a particular
assumption of the parametric form of the interaction. E.g., we can expect that a given treatment will become increasingly
effective along X, but don’t know whether this relationship is linear, quadratic, exponential... Some ways to get around this
include discretizing X (but this pushes the problem back to a specification search of a different kind: choosing cutpoints) or
using flexible models such as splines.

49If slope coefficients are assumed to vary by group, it makes sense to also let intercepts vary by group (this is often already
done with fixed effects), in which case a hierarchical model enables the (group-specific) varying intercepts and slopes to covary.
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4.4 Post-estimation: Supporting assumptions and making predictions

4.4.1 Diagnosis tests of modeling assumptions

See section 3 of https: // clairepalandri. github. io/ docs/ CLRM& estimators. pdf .

4.4.2 Falsification tests of identifying assumptions

One can never directly test the identifying assumptions, i.e., prove that they hold. But one can do falsification
analyzes that will either increase or decrease our confidence in them — and thus support the internal validity
of the study. These are often referred to as “falsification” or “placebo” tests.

Show balance in X̄ across groups Causal inference rests upon the assumption that the treatment and
control groups are comparable to some extent — eventually, conditional on some covariates.
In an RCT, the identifying assumption is random assignment. If treatment was indeed randomly assigned,
then the sample means of explanatory variables should be the same across the treatment and control groups
(in expectation). RCT papers hence typically show a “balance table” of sample means of the Xs by group.50

Even in observational settings, it is recommended to always show a balance table, i.e., to document, for each
confounder X, the difference in distributions across treatment status.

– Imbens and Wooldridge (2009, eq. 3) suggests reporting, as scale-free distance measure, the normalized
difference in averages, where S2

0 and S2
1 are the sample variances of X in the control and treatment

groups, respectively:51

∆̃X ∶= (X̄1 − X̄0)/
√

S2
0 + S2

1

– Gelman et al. (2020) suggests plotting:
– for a binary X, the absolute difference in means ∆̃X ∶= X̄1 − X̄0. “Since the standard deviation

for binary variables is determined by exclusively the mean it could be misleading to standardize.”
– for a continuous X, the standardized difference in means, by dividing by the standard deviation

of X for those observations in the inferential group (i.e., generally, in the treatment group):

∆̃X ∶= (X̄1 − X̄0)/S1

Falsification tests In observational studies, the general approach to support core identifying assumptions
is to show that the specification does not find an effect when one indeed “should not” exist, e.g., by looking
at an outcome which should not be affected under the identifying assumption. If the analysis picks up an
effect where there isn’t one, it suggests that the identifying assumption is violated, a confounder is probably
driving the relationship.52

• IV The two main identifying assumptions can be tested:

– Relevance (Z is strongly related to sorting into treatment D): directly observable in the 1st stage;

50One should show for each X the difference of sample means between the two groups, but not a t-test of whether that
difference is significantly different from zero. Indeed, a t-test tells us whether that difference could have happened by chance.
The random assignment already guarantees that any difference observed would have happened by chance (unbiasedness). A
t-test in this context is therefore conceptually unsound. Hayes and Moulton (2017) explain that “the point of displaying between-
arm comparisons is not to carry out a significance test, but to describe in quantitative terms how large any differences were,
so that the investigator and reader can consider how much effect this may have had on the trial findings.” Angrist and Pischke
(2008, table 2.2.1, p.14) seem to make that mistake in discussing the STAR experiment “The P-value in the last column is for
the F-test of equality of variable means across all three groups. [...] Differences in these characteristics across the three class
types are small and none are significantly different from zero. This suggests the random assignment worked as intended.”

51This is different from the t-statistic for the null hypothesis of equal means: t = (X̄1 − X̄0)/

√

S2
0/N0 + S2

1/N1.

52Falsification tests are different from robustness checks, which consist in estimating alternative specifications that test the
same hypothesis.
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– Exclusion restriction (Z isn’t correlated with Y through some pathway other than D). The ideal
falsification test is to estimate the reduced form effect of Z on Y in a situation where Z can’t
affect D. Finding an effect means Z affects Y through another channel than D, falsifying the
exclusion restriction.
Ex: One can use an alternative population or an alternative outcome, that can’t be affected by
the treatment but would be by potential confounders (unobserved characteristics correlated with
Z and Y ).

• RD The two main identifying assumptions can be tested:

– Continuity or “local randomization” (all other factors determining Y evolve “smoothly” w.r.t. Z).

∗ Do other covariates jump at the cutoff c? One can test that by estimating one’s model with
Y replaced by covariates, and plotting the observations and the fitted curves. If none do, it
is probable that the unobservables don’t either.

∗ There is the specific concern that units might be sorting on the running variable. If that was
the case, we would expect some bunching of units at the cutoff. McCrary (2008) proposes a
density test, where under H0, the density should be continuous at c, whereas under Ha, the
density should increase at c.

– Relevance (discontinuity in the dependence of D on Z: D = 1{Z ≥ c}). One can test this
assumption by looking at whether jumps occur at placebo cutoffs c̃. Imbens and Lemieux (2008)
suggests taking one side of the discontinuity, using the median of the running variable in that
section as placebo cutoff, and checking that there is no discontinuity in Y .

• DiD The two main identifying assumptions can be tested:

– Same counterfactual trends across groups. Tests include:

∗ comparing trends in the pre-period;
∗ using an alternative outcome that shouldn’t be affected by the treatment, but would be af-
fected by potential confounders, i.e., where unobservables could lead to a similar relationship,
if they drove the result;

∗ using an alternative control group and checking that we find the same estimated effect;
∗ moving the event to points earlier in time, and checking that we find zero effect. (Falsely
assume that the onset of treatment occurs 1, 2, 3... time periods before it actually does.
Finding an effect which is statistically indistinguishable from 0 supports that the observed
change is more likely due to the treatment (event) than to some alternative force.)

– Same group composition over time. Panel data satisfies this assumption by definition; with
repeated cross-sectional data, we can estimate covariate balance regressions.

• SCM

– e.g., rolling back the treatment date. moving the event to points earlier in time, and checking
that we find zero effect. Ex: Abadie et al. (2015) does “backdating”: rewind time from the date
of the treatment itself and estimate their model on an earlier (placebo) date. Finding no effect
of placebo dates on output supports that any deviations found in the actual event date might be
due to, e.g., structural breaks caused by the event itself.

Robustness to assumption of no unobserved confounders (Cinelli and Hazlett, 2020): new tools
to evaluate: instead of arguing whether 0 confounding is plausible or not, be transparent about the amount
of confounding necessary to change our conclusions. Compute sensitivity measures of point estimates and
t-values. On top of a point estimate and an SE (or CI), report “Robustness Value (RV).” R package:
sensemakr::: sensitivity analysis tools for OLS
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Examples

DiD Linden and Rockoff (2008) estimates individuals’ valuation of crime risk, using a hedonic pricing
model. Yit = property selling price, Dit = a registered sex offender moves in within 0.1 mile (Gi ∶=
1{i ∈ 0.1 mile radius} and Pt ∶= 1{t ∈ post sex offender moving in} = 1{t ≥ τ}.).
If the “same counterfactual trends” assumption didn’t hold, i.e., if the prices of houses in offender areas
were trending over time differently than the other houses in their neighborhood, the authors would
estimate a spurious impact of the offender’s arrival. They run falsification tests where they estimate
the model using false arrival dates (2-3 years prior to an offender’s actual arrival), and find no effect.

4.4.3 Mechanisms & External validity

Validity of a statistical analysis

• Internal validity = the extent to which the causal effect in the population being studied is properly
identified. It is determined by how well the study can rule out alternative explanations for its findings.
Threats to internal validity include omitted variables, functional form misspecification, measurement
error, sample selection, heteroskedasticity and/or correlated error terms...

• External validity = the extent to which the inferences can be generalized to other populations and
settings.
△! Even in randomized trials, the experimental sample often differs from the population of interest.
If participation decisions are explained by observed variables, such differences can be overcome by
reweighting, but participation may depend on unobserved variables.
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5 Presentation

5.1 Characterizing the empirical strategy

The empirical strategy for any econometric analysis aiming for causal inference should contain — to some
degree, explicitly — the following items:

1. Research question — What causal effect of interest are we trying to estimate?

2. Ideal experiment — What ideal experiment would capture the causal effect?
Define that by defining the corresponding counterfactual question first: What would happen if certain
things were changed while others were held fixed?

3. Identification strategy — How are the observational data at hand used to make comparisons that
approximate such an experiment? Specifying notably: the identifying assumptions, what makes them
satisfied, the specific effect estimated (ATET, LATE...).

4. Estimation method (incl. assumptions made when constructing standard errors).

5. Falsification tests that bring confidence in the identifying assumptions.

All these items can be characterized before opening the dataset.

5.2 Putting the paper in perspective

In addition to the paper’s empirical strategy, one may want to discuss:

• Contributions to the literature on the topic or research question

• Methodological contributions

• Internal validity of the statistical analysis
Are the identifying assumptions plausible (are there stories under which the assumptions would not
hold?) Could there be measurement error? Are there unexplained results?

• External validity of the statistical analysis

– w.r.t. policy: is there a gap between policy questions and the analyses performed?
– w.r.t. the literature: how does the paper account for its results compared to other results in the

literature?
– w.r.t. other settings: are the results generalizable to other populations and settings?
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6 Other branches of causal modeling

6.1 Which uncertainty matters? Randomization inference (RI)

“In randomization-based inference, uncertainty arises naturally from the random assignment of the treat-
ments, rather than from the hypothesized sampling from a large population.” (Athey and Imbens, 2017)

The frequentist inference techniques we commonly use in regression analysis correspond to sampling-based
inference. They consider variation in sampling: the uncertainty about population parameters is induced by
random sampling from the population. These methods ask: What would have occurred under a different
random sample than the one sampled?

In causal inference studies, there is also another type of variation at play: variation in assignment of treat-
ment, i.e., design-based uncertainty corresponding to what the regression outcome would have been under
alternative randomizations of treatment assignment. In “Randomization Inference,” introduced by Fisher
(1935), the basis for inference is the distribution induced by the randomization of the treatment allocation.
One takes “a design-based perspective where the properties of the estimators arises from the stochastic nature
of the treatment assignment, rather than a sampling-based or model-based perspective where these properties
arise from the random53 sampling of units from a large population in combination with assumptions on this
population distribution” (Athey and Imbens, 2022). One asks: What would have occurred under a different
random assignment of treatment among units than the assignment observed?

Application to hypothesis testing Both sampling-based and design-based inference follow the same
approach to hypothesis testing: we formulate a null hypothesis that represents a fact about the data we’ll
try to refute. In causal inference, it is generally a hypothesis of no effect. We then derive a test statistic T
s.t. when H0 is true, T has a specific distribution, and we look at where the value of T for our observed data
Tobs lies within that distribution. The furthest in the tails, the less likely these observed data were under
the null hypothesis, therefore the higher the confidence against it.

In randomization inference, considering the sharp null hypothesis of no effect for any unit,54 we can simply
use β as the test-statistic and obtain its empirical distribution under H0. Indeed:

− If there is no effect for any unit, then a unit’s potential outcomes are identical: the observed outcome is
also the counterfactual. Under H0, our data therefore represent the outcomes of all possible experiments.
We know the exact value of all the missing potential outcomes.

− If we construct all possible random assignments, estimate β̂ for each, the resulting distribution of β̂ is
therefore the reference distribution under H0.

− We look at where our actual β̂obs falls in the reference distribution; if in the tails, e.g., such that only 2%
of all random assignments produce a β̂ ≥ β̂obs, our one-tailed p-value is 0.02.

In practice: simulation When all possible random assignments can be simulated, the reference distribu-
tion is known, thus RI produces exact p-values. In practice, the number of possible assignments is generally
huge, so we don’t simulate all of them but many, to approximate the reference distribution, and compute
approximate p-values. We repeat a large number of times (e.g., 10000) the following procedure:55

53At this point the term ‘randomization’ might seem confusing, as both approaches assume and build inference from random-
ness: in the traditional approach, that of the sample; in the design approach, of the treatment assignment. There is a subtle
difference: in the first the sample isn’t randomized but simply random, i.e., taken randomly, whereas in the second, because
assignment is made in a random fashion, the resulting treatment is first randomized, and therefore random. RI is aptly named.

54Note that this is substantially different from the usual null hypothesis in sampling-based inference of no average effect.
55RI is a simulation approach, like Bootstrap, however Bootstrap considers variation from sampling. A Bootstrap procedure

resamples observations from our actual sample (which is fair, as we assumed it was representative of the population), with
replacement, to simulate how sampling variation would affect our results.
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1. Re-assign treatment randomly, i.e., draw from the “randomization set”56 (respecting the structure of the
original assignment mechanism, e.g., within strata), thereby generating fake treatment statuses.

2. Estimate the regression model using these fake treatments, and store the β̂s.

We obtain a distribution for the β̂s.

Sampling-based inference Randomization inference

H0, Ha

H0: No average effect: E[Y 1
i ] − E[Y 0

i ] = 0 H0: Sharp no effect: Y 1
i − Y 0

i = 0,∀i
Ha: An average effect: E[Y 1

i ] − E[Y 0
i ] ≠ 0 Ha: ∃i s.t. Y 1

i − Y 0
i ≠ 0

T & distribution of T under H0

T ∶= β̂ − β0

SE[β̂]
= β̂ − 0
SE[β̂]

T ∶= β̂

Under H0, the distribution of T across all random sam-
ples converges (as n → ∞) to a known distribution:
Student’s T .
Ð→ We compute the parameters of this distribution.
Ð→ The asymptotic distribution of T (across all random
samples) = the “sampling distribution under H0.”

Under H0, how the treatment was randomly assigned
wouldn’t change the observed outcomes; but it would
change the value of T .
Ð→We compute T for all possible random assignments.
Ð→ The exact distribution of T (across all random as-
signments) = the “reference distribution under H0.”

2-tailed p-value = Pr [observing a T > ∣Tobs∣] under H0

= share of the distribution that is > ∣Tobs∣

= Pr(the observed difference between groups would have

been observed) if they had been drawn from underlying
sampling frames with no mean difference.

= Pr(the observed difference between groups would have

been observed) if the treatment effect were in fact 0 for
every subject.

Ô⇒ Given e.g. a rejection threshold α = 0.05, the test will erroneously reject H0 < 5% of the time

Why choose randomization-based inference instead of sampling-based inference?

• Conceptually, there is sometimes no true sampling variation to speak of. Suppose we observed the
universe of y outcomes, then there is no sampling from a large population, making sampling-based
p-values meaningless, SE = 0.57 Regardless, the core uncertainty within a causal study is not solely
driven by the universe of possible samples, but also by the universe of possible treatment assignments.

• RI is not confined to large samples. As we don’t have to appeal to the asymptotic properties of an
estimator, it allows us to make inferences about causal effects even in settings where assuming an
infinite number of treatment units may not be credible.

• RI is not confined to normally distributed outcomes. The method can be applied to all sorts of
outcomes, such as counts, durations, ranks (Gerber and Green, 2012, p.63).

• RI salvages inference with particular clustered designs

– Small number of assignment clusters: When the number of clusters is small, cluster-robust standard
errors are downwardly biased. RI circumvents this problem as the reference distribution is calculated
based on the set of possible clustered assignments, which takes into account the sampling variability
associated with clustered assignment.

– Assignment clusters without well-defined boundaries: if the assignment clustering isn’t within well-
defined boundaries, one can’t rely on common methods to estimate correct standard errors (clusters

56(Rubin, 1974) defines the “randomization set” as “the set of allocations that were equally likely to be observed given the
randomization plan.” Ex: for a completely randomized experiment of 2N trials, where N is assigned to each treatment arm,
there are (2N

N
) possible allocations.

57While it is indeed possible to observe the value of a variable for all the units in a population, one rarely observes all the
possible range of values that units could have taken. Thinking of that universe of values as the relevant population alleviates
the conceptual concern.
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can’t be defined; other sandwich-type covariance matrix estimators require additional modeling
assumptions. . . ). Ex: weather variables such as rainfall are often used as a strategy for causal
inference, as rainfall shocks are as-if randomly assigned. However, the assignment of rainfall is
highly correlated across space in an unformalizable structure. Cooperman (2017) uses national
draws of historical rainfall patterns as potential randomizations, allowing her to preserve patterns
of spatial dependence while remaining agnostic about the specific form of the clustering.58

• Apparently RI is somewhat more robust to the presence of leverage in a few observations.
Young (2019) collected over fifty experimental (lab and field) articles from the American Economic
Review, American Economic Journal: Applied, and American Economic Journal: Economic Policy.
He then reanalyzed these papers, using the authors’ models, by dropping one observation or cluster
and reestimating the entire model, repeatedly. He found that with the removal of just one observation,
35% of 0.01-significant reported results in the average paper can be rendered insignificant at that level,
16% of 0.01-insignificant reported results can be found to be significant at that level. In the typical
paper, randomization inference found individual treatment effects that were 13 to 22 percent fewer
significant results than what the authors’ own analysis had discovered.

Limitations

• RI does not accommodate null hypotheses such as the average effect of the treatment is zero, against
the alternative hypothesis of a non zero average effect.

• RI is a method for hypothesis testing — not for constructing confidence intervals!
△! The “reference distribution under H0” does not give confidence intervals for β̂. It is instead the
set of all possible estimated values of β̂ when the true β = 0. This does not represent our statistical
uncertainty about β̂, it only enables us to compute p-values for the sharp null hypothesis of no effect.

↪ It is legitimate to ask whether RI is even worth it then, given the heavy criticism of the 2-way
binary approach to statistical hypothesis testing, based on the NHST falsificationist paradigm
and the formulation of binary statements of ‘statistical significance’ from a p-value threshold.

• RI may also be used for construction of confidence intervals, but this requires additional assumptions.

– Rosenbaum (2002, p.45) proposes a method by “inverting” the hypothesis test.
– Gerber and Green (2012, p.67) proposes a simpler — but less accurate — method, and argues

that the two methods tend to produce similar results, especially in large samples.
– Barrios et al. (2012, eq. (4.2)) gives the exact conditional (randomization-based) variance of β̂

(in the univariate linear regression model of Y on D) under the assumption of a homogeneous
treatment effect, based on Neyman (1923) (unfortunately, the proof is omitted):

V[β̂OLS∣e] =
N

N0N1(N − 2)
∑
i

(ei − ē)2, where N1 ∶=∑
i

Di, N0 ∶= N −N1

58Note that the use of historical data is disputable if climate change changes the distribution across years.
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6.2 Structural Equation Models (SEMs)

Structural Equation Models are probabilistic models that unite multiple predictor and response
variables in a single causal network.

SEMs are increasingly popular in ecological research. They are often represented using path diagrams, a.k.a.
directed acyclic graphs (DAG), where arrows indicate directional relationships between observed variables.

Implicit assumptions — what separate SEMs from traditional modeling approaches:

1. SEMs implicitly assume that the relationships among variables (paths) are causal. This is a big leap
from the traditional statistics’ “correlation does not imply causation.” By using pre-existing knowledge
of the system, one makes an informed hypothesis about the causal structure of the variables, and the
SEM explicitly tests this supposed causal structure.

2. Variables can be both predictors and responses. A SEM is thereby useful for testing and quantifying
indirect (cascading) effects that would otherwise go unrecognized by any single model.

Traditional SEM

Estimation: Coefficients are estimated simulta-
neously in a single variance-covariance matrix of all
variables; typically by MLE.

Goodness-of-fit: = discrepancy between the ob-
served and predicted covariance matrices. χ2 test:
the χ2 statistic describes the agreement between the
2 matrices.

Assumptions
• Independent errors (no underlying structure)
• Normal errors

Limits
• Assumptions often violated in ecological re-
search: e not independent (spatial or temporal
correlation in observational studies), distribu-
tion not normal (count data ∼ Poisson)...

• computationally intensive (depending on the
sizes of the variance-covariance matrix);

• if variables are nested, then the sample size is
limited to the use of variables at the highest
level of the hierarchy. Can shrink our sample
and reduce the power of the analysis. . .

Piecewise SEM

Estimation: Decompose the network and es-
timate each relationship separately (estimate m
separate vcov matrices). Then piece the m paths
together for inferences about the entire SEM.

Ô⇒ Much easier to estimate than a single vcov ma-
trix → can estimate large networks

Ô⇒ Flexible: can incorporate many model struc-
tures, distributions... using extensions of lin-
ear reg (random effects, hierarchical models,
non-normal responses, spatial correlation...)

Goodness-of-fit: No formal χ2 test. Instead:
“tests of directed separation”: are any paths missing
from the model?
The ‘basis set’ = all k pair relationships unspeci-
fied in the model (i.e., independence claims). Test
whether are indeed not significant (controlling for
variables on which these paths are conditional), keep
the p-value. From the k p-values, calculate Fisher’s
C statistic C = −2∑k

i=1 ln(pi) ∼ χ2(2k). If C’s p-
value > 0.05, accept the model. This approach is
vulnerable to model misspecification.
Rmk: we can compute an AIC score for the SEM,
for model comparisons: AIC = C + 2k n

n−k−1
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6.3 Structural Vector Autoregression (SVAR)

Add Ghanem and Smith (2021), and Greene 2002, section 19.6.7.
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A Maths of potential outcomes

The steps that were overlooked in the main document are provided here in blue.

2.1.1 The original selection bias problem

E[Yi∣Di=1] −E[Yi∣Di=0] = E[Y 1
i ∣Di=1] −E[Y 0

i ∣Di=0] (definition of potential outcomes)

= E[Y 1
i ∣Di=1] −E[Y 0

i ∣Di=1] +E[Y 0
i ∣Di=1] −E[Y 0

i ∣Di=0]
= E[Y 1

i − Y 0
i ∣Di=1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ATET

+ E[Y 0
i ∣Di=1] −E[Y 0

i ∣Di=0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

selection bias

The same demonstration holds conditional on Xi, i.e., within each stratum of Xi:

E[Yi∣Di=1,Xi] −E[Yi∣Di=0,Xi] = E[Y 1
i ∣Di=1,Xi] −E[Y 0

i ∣Di=0,Xi]
= E[Y 1

i ∣Di=1,Xi] −E[Y 0
i ∣Di=1,Xi] +E[Y 0

i ∣Di=1,Xi] −E[Y 0
i ∣Di=0,Xi]

= E[Y 1
i − Y 0

i ∣Di=1,Xi]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ATET for given Xi

+ E[Y 0
i ∣Di=1,Xi] −E[Y 0

i ∣Di=0,Xi]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

selection bias for given Xi

2.1.2 Expressing TE as a linear regression

Simplest setting: unlimited Y , binary D, no X

The treatment effect can be assumed to be homogeneous or heterogeneous. In either case, we’ll
show that the linear regression on the treatment recovers the/a treatment effect. The relation be-
tween observed outcomes and potential outcomes can be written as a linear regression on the treatment:

• Case 1: homogeneous treatment effect Y 1
i − Y 0

i = β

Yi = Y 0
i + (Y 1

i − Y 0
i )Di

= E[Y 0
i ] + βDi + Y 0

i −E[Y 0
i ]

= α + βDi + ui

• Case 2: heterogeneous treatment effect Y 1
i − Y 0

i = βi. Note β the ATET E[βi ∣Di=1].

Yi = Y 0
i + (Y 1

i − Y 0
i )Di

= E[Y 0
i ] + βiDi + Y 0

i −E[Y 0
i ]

= E[Y 0
i ] + βDi + (βi − β)Di + Y 0

i −E[Y 0
i ]

= α + βDi + ui
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The OLS slope estimand simplifies to the difference in average observed outcomes, which itself simplifies
to an expression with the error term:

βOLS =
cov[Yi,Di]

V[Di]
= E[YiDi] −E[Yi]E[Di]

E[D2
i ] −E[Di]2

=
E[Yi∣Di=1] P(Di=1) − (E[Yi∣Di=0] P(Di=0) +E[Yi∣Di=1] P(Di=1)) P(Di=1)

P(Di=1) −P(Di=1)2

=
E[Yi∣Di=1] P(Di=1) (1 −P(Di=1)) −E[Yi∣Di=0] P(Di=0) P(Di=1)

P(Di=1)(1 −P(Di=1))

= E[Yi∣Di=1] P(Di=1) P(Di=0) −E[Yi∣Di=0] P(Di=0) P(Di=1)
P(Di=1) P(Di=0)

= E[Yi ∣Di=1] −E[Yi ∣Di=0]

⎧⎪⎪⎨⎪⎪⎩

E[Yi∣Di=1] = α + β +E[ui∣Di=1]
E[Yi∣Di=0] = α +E[ui∣Di=0]

Ô⇒ E[Yi ∣Di=1]−E[Yi ∣Di=0] = β +E[ui ∣Di=1]−E[ui ∣Di=0]

• Case 1: ui ∶= Y 0
i −E[Y 0

i ], therefore:

E[ui ∣Di=1] −E[ui ∣Di=0] = E[Y 0
i ∣Di=1] −E[Y 0

i ∣Di=0]

• Case 2: ui ∶= (βi − β)Di + Y 0
i −E[Y 0

i ], therefore:
E[ui ∣Di=1] −E[ui ∣Di=0] = E[βi−β ∣Di=1] +E[Y 0

i ∣Di=1] − 0 −E[Y 0
i ] −E[Y 0

i ∣Di=0] +E[Y 0
i ]

= E[βi ∣Di=1] − β +E[Y 0
i ∣Di=1] −E[Y 0

i ∣Di=0]
= E[Y 0

i ∣Di=1] −E[Y 0
i ∣Di=0]

In both cases, βOLS = ... = E[Yi ∣Di=1] −E[Yi ∣Di=0] = ... = β + selection bias.

With covariates X

For simplicity, consider a discrete Xi.

• Matching estimand

βM =∑
x

δx P(Xi=x ∣Di=1) =∑
x

δx
P(Xi=x,Di=1)

P(Di=1)
=∑

x

δx
P(Di=1∣Xi=x) P(Xi=x)

P(Di=1)

= 1

P(Di=1)
∑
x

δx P(Di=1∣Xi=x) P(Xi=x)

= ∑x δx P(Di=1∣Xi=x) P(Xi=x)
∑xP(Di=1∣Xi=x) P(Xi=x)

• OLS estimand
The demonstration uses the Frisch-Waugh-Lovell theorem (Angrist and Pischke, 2008, p.55).

3.1 IV
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IV estimand

βIV ∶=
cov[Yi, Zi]
cov[Di, Zi]

= E[YiZi] −E[Yi]E[Zi]
E[DiZi] −E[Di]E[Zi]

=
E[Yi ∣ Zi=1]P(Zi=1) − (E[Yi ∣ Zi=1]P(Zi=1) +E[Yi ∣ Zi=0]P(Zi=0))P(Zi=1)

E[Di ∣ Zi=1]P(Zi=1) − (E[Di ∣ Zi=1]P(Zi=1) +E[Di ∣ Zi=0]P(Zi=0))P(Zi=1)

=
E[Yi ∣ Zi=1](1 −P(Zi=1)) −E[Yi ∣ Zi=0]P(Zi=0)
E[Di ∣ Zi=1](1 −P(Zi=1)) −E[Di ∣ Zi=0]P(Zi=0)

= E[Yi ∣ Zi=1] −E[Yi ∣ Zi=0]
E[Di ∣ Zi=1] −E[Di ∣ Zi=0]

The identifying assumptions then reduce it to the LATE on the compliers:

• Numerator: E[Yi ∣ Zi=1] −E[Yi ∣ Zi=0] =
= E[Yi∣Zi=1,D0

i =0,D1
i =0]P (D0

i =0,D1
i =0) −E[Yi∣Zi=0,D0

i =0,D1
i =0]P (D0

i =0,D1
i =0)

+E[Yi∣Zi=1,—– 0,—– 1]P (—– 0,—– 1) −E[Yi∣Zi=0,—– 0,—– 1]P (—– 0,—– 1)
+E[Yi∣Zi=1,—– 1,—– 0]P (—– 1,—– 0) −E[Yi∣Zi=0,—– 1,—– 0]P (—– 1,—– 0)
+E[Yi∣Zi=1,—– 1,—– 1]P (—– 1,—– 1) −E[Yi∣Zi=0,—– 1,—– 1]P (—– 1,—– 1)

=(((((((((
E[Y 0

i ∣D0
i =0,D1

i =0]P (D0
i =0,D1

i =0) −(((((((((
E[Y 0

i ∣D0
i =0,D1

i =0]P (D0
i =0,D1

i =0)
+E[Y 1

i ∣—– 0,—– 1]P (—– 0,—– 1) −E[Y 0
i ∣—– 0,—– 1]P (—– 0,—– 1)

+E[Y 0
i ∣—– 1,—– 0]P (—– 1,—– 0) −E[Y 1

i ∣—– 1,—– 0]P (—– 1,—– 0)

+(((((((((
E[Y 1

i ∣—– 1,—– 1]P (—– 1,—– 1) −(((((((((
E[Y 1

i ∣—– 1,—– 1]P (—– 1,—– 1)
= E[Y 1

i − Y 0
i ∣D0

i =0,D1
i =1]P (D0

i =0,D1
i =1) −E[Y 1

i − Y 0
i ∣D0

i =1,D1
i =0]P (D0

i =1,D1
i =0)

= E[Y 1
i − Y 0

i ∣D0
i =0,D1

i =1]P (D0
i =0,D1

i =1) as the probability of defiers is 0

• Denominator:

E[Di ∣ Zi=1] −E[Di ∣ Zi=0] = E[D1
i −D0

i ]
= 1 × P (D1

i −D0
i = 1) + 0 × P (D1

i −D0
i = 0) − 1 × P (D1

i −D0
i = −1)

= P (D0
i =0,D1

i =1) as the probability of defiers is 0

Ô⇒ E[Yi ∣ Zi=1] −E[Yi ∣ Zi=0]
E[Di ∣ Zi=1] −E[Di ∣ Zi=0]

= E[Y 1
i − Y 0

i ∣D0
i =0,D1

i =1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

LATE on the compliers
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Counting and characterizing compliers to get more out of the LATE

• Size of the complier group: It is the Wald first-stage, as, given monotonicity:

P(D1
i >D0

i ) = P(D1
i −D0

i = 1) = E[D1
i −D0

i ] = E[D1
i ] −E[D0

i ] = E[Di∣Zi=1] −E[Di∣Zi=0]

• Share of treated that are compliers:

P(D1
i >D0

i ∣Di=1) =
P(D1

i >D0
i ,Di=1)

P(Di=1)
= P(Di=1 ∣D1

i >D0
i ) P(D1

i >D0
i )

P(Di=1)

= P(Zi=1 ∣D1
i >D0

i ) P(D1
i >D0

i )
P(Di=1)

= P(Zi=1) P(D1
i >D0

i )
P(Di=1)

= P(Zi=1) × (E[Di∣Zi=1] −E[Di∣Zi=0])
P(Di=1)

= P(instrument is switched on) × 1st stage
share treated

• Distribution of covariates X for compliers:
– For binary characteristics X, we can compute relative likelihoods:

P(Xi=1 ∣D1
i >D0

i )
P(Xi=1)

= P(Xi=1,D1
i >D0

i )
P(Xi=1) P(D1

i >D0
i )
= P(D1

i >D0
i ∣Xi=1)

P(D1
i >D0

i )

= E[Di ∣ Zi=1,Xi=1] −E[Di ∣ Zi=0,Xi=1]
E[Di ∣ Zi=1] −E[Di ∣ Zi=0]

= 1st stage ∣Xi=1
1st stage

3.2 RD

Sharp RD estimand

βRD ∶= lim
x→c+

E[Yi ∣Xi = x] − lim
x→c−

E[Yi ∣Xi = x]

= lim
x→c+

E[Y 1
i ∣Xi = x] − lim

x→c−
E[Y 0

i ∣Xi = x]

= E[Y 1
i ∣Xi = c] −E[Y 0

i ∣Xi = c]
= E[Y 1

i − Y 0
i ∣Xi = c]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
LATE at the cutoff

Fuzzy RD estimand

βIV ∶=
lim
x→c+

E[Yi ∣Xi=x] − lim
x→c−

E[Yi ∣Xi=x]

lim
x→c+

E[Di ∣Xi=x] − lim
x→c−

E[Di ∣Xi=x]
= lim

δ→0

E[Yi ∣ c <Xi < c + δ] −E[Yi ∣ c − δ <Xi < c]
E[Di ∣ c <Xi < c + δ] −E[Di ∣ c − δ <Xi < c]

E[Yi ∣ c <Xi < c + δ] −E[Yi ∣ c − δ <Xi < c] ≃ γβ
E[Di ∣ c <Xi < c + δ] −E[Di ∣ c − δ <Xi < c] ≃ γ

Therefore, βIV =
γβ

γ
= β
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3.3 DiD, DiDiD, Event-study

DiD estimand

βDiD ∶= (ȲG1P1−ȲG1P0
) − (ȲG0P1−ȲG0P0

)

∶= (E[Yi1 ∣ Gi=1] −E[Yi0 ∣ Gi=1]) − (E[Yi1 ∣ Gi=0] −E[Yi0 ∣ Gi=0])

= (E [Y 1
i1 ∣ Gi=1] −E [Yi0 ∣ Gi=1] ) − (E [Y 0

i1 ∣ Gi=0] −E [Yi0 ∣ Gi=0] )

= E [Y 1
i1 − Yi0 ∣ Gi=1] −E [Y 0

i1 − Yi0 ∣ Gi=0]
= E [Y 1

i1 − Yi0 ∣ Gi=1] −E [Y 0
i1 − Yi0 ∣Gi=1] (assumption of parallel trends)

= E[Y 1
i1 − Y 0

i1 ∣ Gi=1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ATET

DiDiD estimand

βDiDiD ∶= [(ȲG1S1P1−ȲG1S1P0
) − (ȲG1S0P1−ȲG1S0P0

)] − [(ȲG0S1P1−ȲG0S1P0
) − (ȲG0S0P1−ȲG0S0P0

)]

= (E [Yi1−Yi0 ∣ G1,S1] −E [Yi1−Yi0 ∣ G1,S0] ) − (E [Yi1−Yi0 ∣ G0,S1] −E [Yi1−Yi0 ∣ G0,S0] )
= (E [Y 1

i1−Yi0 ∣ G1,S1] −E [Y 0
i1−Yi0 ∣ G1,S0] ) − (E [Y 0

i1−Yi0 ∣ G0,S1] −E [Y 0
i1−Yi0 ∣ G0,S0] )

= (E [Y 1
i1−Yi0 ∣ G1,S1] −(((((((((

E [Y 0
i1−Yi0 ∣ G1,S0]) − (E [Y 0

i1−Yi0 ∣G1,S1] −(((((((((
E [Y 0

i1−Yi0 ∣G1,S0]) (∥ trends)
= E [Y 1

i1−Yi0 ∣ G1,S1] −E [Y 0
i1−Yi0 ∣ G1,S1]

= E [Y 1
i1 − Y 0

i1 ∣ G1, S1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ATET
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