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what to do when they are violated,

and estimator properties
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1 Assumptions of the CLRM for inference

The classical linear regression model (CLRM) consists of a set of population assumptions that describe the
data generating process (DGP). By decreasing order of importance (Gelman et al., 2020, Ch. 11):

Notation: System of n equations Matrix

Model: yi = x′iβ + ei (i = 1, ..., n) y = Xβ + e

Assumptions

Gauss-
Markov

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A1) linearity The model is linear in β The model is linear in β

(A2) identification ρxk,xl
≠ 1 Xn×p has rank p

(A3) strict exogeneity E[ei∣X] = 0 E[e∣X] = 0n×1
(A4) spherical errors ei∣xi iid∼ (0, σ2) V[e∣X] = σ2In

– independent ei ⊥⊥ ej ∣X
– homoskedastic V[ei∣X] = σ2 σ2

i

(A5) normal errors ei∣X ∼ N (0, σ2) e∣X ∼ N (0n×1, σ2In)

(A1) Linearity in the parameters and correct model specification (notably an additive error term).
I.e., the linear functional form cöıncides with the actual DGP.

(A2) Identification: regressors are linearly independent (no perfect collinearity).
If this is violated, drop one regressor, or transform collinear regressors into a single x.

(A3) Strict1 exogeneity of regressors: all other factors that affect yi are unrelated to xi.
E[ei∣X] = 0 also implies E[ei]=0 and E[X′ei]=0, leading to cov[ei,x] = 0: X and ei are uncorrelated.

(A4) Spherical errors2

• Independent errors: errors are randomly spread around the regression line.
Ô⇒ no autocorrelation: cov[ei, ej ∣X] = E[eiej ∣X] = 0
This will be violated when there is structure in the data that is left out of the model (e.g., with
time series data, there may be serial correlation in the error term if the model doesn’t include lags
of regressors, nor is an autoregressive or a moving average model...).

• Homoskedastic errors: equal conditional variance V[ei∣X] = σ2

I.e., the spread of errors, or model uncertainty, is identical across the support of yi.
If this is violated, β̂OLS remains valid but is inefficient: β̂WLS has lower variance.

(A5) Normal errors
This assumption is not required for estimating the regression but for making inferences, e.g., com-
puting confidence intervals or p-values. Without (A5), t and F tests are invalid.

To perform statistical inference, we need to know the full sampling distribution of β̂ (ex: the one-sample

t-test of H0 ∶ β=0 assumes that the sampling distribution of β̂ is normal). This sampling distribution

depends on the distribution of ei; if errors aren’t normal, then β̂OLS isn’t normal. However, when n
is large enough, Laws of Large Numbers (LLNs) and Central Limit Theorems (CLTs) say that the

asymptotic sampling distribution of β̂OLS is normal, such that t and F tests are robust to departures

1“Strict” exogeneity refers to the fact that the expected value of ei is not related to xj ,∀j (not solely xi). Ex: with time
series data, this means not only that et and xt are uncorrelated, but that et is uncorrelated with past and future values of X.

2Note that most statements are actually conditional statements. E.g., (A4) assumes conditionally homoskedastic errors.
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from normality if n is large. I.e., with large sample sizes, non-normality of ei isn’t a big problem as the
normality of β̂OLS is still approximately true. But with small n and highly non-normal errors, appealing
to an asymptotically normal approximation may be unreasonable, and one may want to consider an
alternative (e.g., bootstrap).
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2 Estimators of {β,σ2
} and their statistical properties

Multiple estimators are often available to estimate some summary of the relationship between xi and yi. How
one chooses between them (besides their ease of computation) is motivated by their statistical properties.

2.1 Estimator properties

Let θ̂ be an estimator for the population parameter θ, for a sample of size n. θ̂, as a function of the random
sample, is a random variable. The various possible samples of size n would each lead to a different realization
θ̂s, which together form the estimator’s density or probability distribution function (pdf) fθ̂. θ̂ has:

— finite sample properties: characteristics of fθ̂ for a finite n. Ex: bias, efficiency (precision);
— asymptotic properties: characteristics of fθ̂ as n→∞. Ex: consistency, asymptotic distribution.

As we always deal with finite samples, finite sample properties may seem the most important. In effect, bias
(concerned with the center of the pdf) and efficiency (its spread) are the most common selection criteria.
We note however that these tell us nothing about the properties of the estimator for our own sample, they
tell us only about the distribution of values from hypothetical samples.

Finite sample properties

• θ̂ is unbiased iff E[θ̂] = θ
The estimator is correct in expectation over all possible samples. I.e., its distribution is centered
around the estimand. △! But our estimate from our own sample could be anywhere within that
distribution, e.g., far from its center. The bias of θ̂ is E[θ̂] − θ.

• θ̂ is efficient or “best” iff it has the lowest possible variance of all estimators: V[θ̂] ⩽ V[θ̃...]
Its distribution is condensed, thus though the realization θ̂s from any sample could be anywhere
within that distribution, it will never be too far away from the mean (which, if the estimator is
unbiased, is the true θ). For unbiased estimators, that variance is the Cramér-Rao lower bound.

Asymptotic properties

• θ̂ is asymptotically unbiased iff E[θ̂]
p

ÐÐÐÐ→
n→+∞

θ

• θ̂ is asymptotically efficient iff V[θ̂]
p

ÐÐÐÐ→
n→+∞

asymptotic Cramér-Rao lower bound

• θ̂ is consistent iff θ̂
p

ÐÐÐÐ→
n→+∞

θ

I.e., as we get enough data, then we know the truth. Sufficient conditions are that (i) θ̂ be
asymptotically unbiased, and (ii) its variance → 0 as n→∞.

In frequentist statistics, the Maximum Likelihood (ML) and Ordinary Least Squares (OLS) estimators are
widely used. The next sections describe them and their properties.3 Preliminary remarks:

— OLS and ML are rooted in different mathematical disciplines: probabilities for ML, calculus for OLS
(OLS makes no assumption on the probabilistic nature of the variables, it is deterministic).

— OLS is tailored to the linear regression model, and is often used because the estimated function
f(xi, β̂OLS) is unbiased for the conditional expectation E[yi∣xi] even with non-spherical errors.

— ML includes OLS as a special case: if ei∣xi iid∼ N (0, σ2), then yi∣xi ∼MVN(x′iβ,σ2) and β̂OLS = β̂ML.

3All features presented are of the estimators’ conditional distributions, we simply drop the notation ‘∣xi’ for convenience.
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2.2 OLS estimator θ̂OLS = {β̂OLS, σ̂2
OLS
}

Definition The fit of a model y = g(x, β) to each data point is measured by its residual ri ∶= yi − g(xi, β).
The Ordinary Least Squares (OLS) estimator computes, in the context of a model linear in the parameters
g(x, β) = ∑p

j=1 βjhj(x), the values of the parameters that minimize the sum of the squares of the residuals:

β̂OLS ∶= argmin
β

n

∑
i=1

r2i

Solution Let X be the matrix of transformed regressors {hj(x)}pj=1. The FOC of the minimization problem
gives an exact closed-form solution (which the SOC guarantees is a minimum iff the matrix X′X is positive
definite):

β̂OLS = (X′X)−1X′y = (X′X)−1X′(Xβ + e) = β + (X′X)−1X′e

With the residuals ri ∶= êi from the fit, we compute as estimator of σ2 the statistic σ̂2
OLS ∶= s2 ∶= r′r

n−p =
∑i r

2
i

n−p .

Properties [assuming (A1)-(A3)]

• Finite samples

(A3) Ô⇒ β̂OLS unbiased

(A4) Ô⇒ β̂OLS efficient efficient among linear unbiased estimators

Gauss-Markov Theorem: in the semi-parametric4 linear regression model, we can-
not show that β̂OLS is efficient, but we can show that it is the most efficient among
linear5 unbiased estimators. It is the Best Linear Unbiased Estimator (BLUE).

V[β̂∣X] = E [(β̂ −E[β̂])(β̂ −E[β̂])′ ∣ X] = ... = σ2(X′X)−1

(A5) Ô⇒ β̂OLS efficient
In the parametric linear normal regression model (ei ∼ N (0, σ2)), β̂OLS is equal to β̂ML.
Therefore it is efficient, it is the Best Unbiased Estimator (BUE). It is also normally

distributed: β̂OLS = β + (X′X)−1X′e ∼ N (β,σ2(X′X)−1).
(A4) Ô⇒ σ̂2

OLS unbiased6 E[s2∣X] = 1
n−pE[r

′r∣X] = ... = 1
n−pσ

2(n − p) = σ2

• Asymptotics

β̂OLS is asymptotically unbiased as is unbiased

asymptotically normally distributed by a CLT,
√
n(β̂OLS−β)

dÐ→ N (0,M -1
XXMXΣXM

-1
XX
)

asymptotically efficient as σ2(X′X)−1 is the smallest possible asymptotic variance

consistent as 1. is asymptotically unbiased, and 2. V[β̂OLS∣X] = ...
pÐÐÐ→

n→∞
0

σ̂2
OLS is asymptotically unbiased as is unbiased

asymptotically efficient as
√
n(σ̂2

OLS − σ2) dÐ→ N (0,2σ4)
consistent as 1. is asymptotically unbiased, and 2. V[σ̂2

OLS∣X] = 2σ4

n−p
pÐÐÐ→

n→∞
0

4The distribution of ei is not fully characterized.
5Here, linearity does not refer to the linearity of the model w.r.t. the parameters, but to the linearity of β̂ w.r.t. the vector

y, such that y enters the equation linearly: βj = λ1y1 + ... + λnyn. Indeed, β̂OLS = (X′X)−1X′y is linear in y.
6The residuals have n−p degrees of freedom (p parameters β̂ are estimated; the model has an intercept and p−1 regressors).

We must hence divide by n − p in order to bias-adjust any statistic that uses the residuals as proxy for the true errors.

5



2.3 ML estimator θ̂ML = {β̂ML, σ̂2
ML
}

Definition The likelihood function in a regression model is the probability density of the data given the
parameters θ and predictors. The Maximum Likelihood (ML) estimator is then the value of the parame-
ters θ s.t. under the assumed model, the observed data are most likely. Assuming iid observations, we have:

• the likelihood L(y∣X,θ) = f(x1, ...,xn, θ) iid= f(x1,θ) × ... × f(xn,θ) =∏n
i=1 f(xi,θ)

• the log-likelihood logL(y∣X,θ) = ∑n
i=1 log f(xi, θ)

• the ML estimator θ̂ML ∶= argmax
θ
L(y∣X,θ) = argmax

θ
logL(y∣X,θ)

Solution (A5) Ô⇒ y∣X ∼ MVN(Xβ,σ2In). Therefore L(y∣X, β, σ2) = (2πσ2)
−n
2 e−

(y−Xβ)′(y−Xβ)
2σ2 , and

logL(y∣X, β, σ2) = −n
2
ln(2π)− n

2
ln(σ2)− (y−Xβ)′(y−Xβ)

2σ2 . The two FOCs of the maximization problem give an
exact closed-form solution:7

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ logL
∂β

= 0 ⇐⇒ −1
2σ̂2
( − 2X′y + 2X′Xβ̂) = 0 ⇐⇒ β̂ML = (X′X)−1X′y

∂ logL
∂σ2

= 0 ⇐⇒ −n
2σ̂2
+ (y −Xβ̂)′(y −Xβ̂)

2σ̂4
= 0 ⇐⇒ nσ̂2 = (y −Xβ̂)′(y −Xβ̂) ⇐⇒ σ̂2

ML =
ê′ê

n
= r′r

n

Properties (assuming (A1)-(A5))

• Finite samples

β̂ML is unbiased E[β̂ML∣X] = E[(X′X)-1X′y∣X] = E[(X′X)−1X′(Xβ̂ + e)∣X]
= E[β̂∣X] +E[(X′X)−1X′e∣X] = β

efficient V[β̂ML∣X] = E [(β̂ −E[β̂])(β̂ −E[β̂])
′ ∣ X] = E [(β̂ − β)(β̂ − β)′ ∣ X]

= E[(X′X)−1X′e((X′X)-1X′e)′∣X]
= (X′X)−1X′ E[ee′∣X] X(X′X)−1 = σ2(X′X)−1 ⩽ V[β̂...∣X]

normally distributed β̂ML = β + (X′X)−1X′e ∼ N (β,σ2(X′X)−1)

σ̂2
ML is downward biased E[σ̂2

ML∣X] = 1
n
E[r′r∣X] = ... = n−p

n
σ2 < σ2

The variance is underestimated. The size of the bias decreases as the sample size gets larger.
To overcome this problem, we can compute the sample variance s2 instead of σ̂2

ML.

• Asymptotics

β̂ML is asymptotically unbiased as is unbiased

asymptotically efficient as is efficient

consistent as 1. is asymptotically unbiased, and 2. V[β̂ML∣X] = ...
pÐÐÐ→

n→∞
0

σ̂2
ML is asymptotically unbiased as lim

n→∞
E[σ̂2

ML∣X] = lim
n→∞

(σ2 − k
n
σ2) = σ2

asymptotically efficient as
√
n(σ̂2

ML − σ2) dÐ→ N (0,2σ4)
consistent as 1. is asymptotically unbiased, and 2. V[σ̂2

ML∣X] =
2σ4(n−p)

n2

pÐÐÐ→
n→∞

0

7The likelihood function must be differentiable in order to apply the derivative test for determining maxima. In some cases,
the FOCs can be solved explicitly (e.g., the OLS estimator maximizes the likelihood of the linear regression model). Under
most circumstances, however, numerical methods will be necessary to find the maximum of the likelihood function.
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3 Post-estimation model diagnostics

After our statistical software has fit the model and produced the estimates requested, we should check that
the assumptions underlying these numbers hold. Several key assumptions can be diagnosed by simply looking
at the residuals. Indeed, these contain the variation in y and the features of the relationship between y and
X that weren’t explained by the model.

The four plots presented below provide information w.r.t. an assumption of the CLRM.8 In each figure, the
“Case 1” plot illustrates a case where the given assumption seems to be met relatively well, while the “Case
2” plot suggests the reverse.

1. “Residuals vs Fitted” plot — Is there an unmodeled non-linear pattern?

Residuals are plotted against fitted values. Are the residuals spread rather equally around a horizontal
line, without distinct patterns? If they aren’t, it suggests that a non-linear relationship was not
explained by the model and was therefore left out in the residuals. Note: If yi is discrete, such as in
a logistic regression, then residuals are discrete. One shouldn’t plot raw residuals, but rather binned
residuals (divide the data equally into bins based on fitted values, s.t. each bin has the same number of
points, and take the averages for each bin).

2. “Scale-Location” plot — Are the residuals homoscedastic?

The square root of the absolute value of standardized residuals
√
∣ri∣ is plotted against fitted values ŷi.

Is the vertical spread of points uniform along x? A uniform spread indicates residuals have a uniform
variance across the range of predicted values. The reverse suggests there is heteroscedasticity.

3. “Normal Q-Q” plot — Are the residuals normally distributed?

The quantiles of the residuals are plotted against the theoretical quantiles of the normal distribution.
If the residuals are approximately normally distributed, we should see a roughly straight line. The plot
may also reveal outliers.

4. “Residuals vs Leverage” plot — Are there influential observations?

First, let’s distinguish outliers, high leverage points, and influential points:

• Outliers are observations with unusual outcome values yi (i.e., that are considerably different from
the rest of the data). They may not have a lot of influence on the regression line.

• High-leverage points are observations with unusual predictor values xi. In linear regression, leverage
measures how sensitive a fitted ŷi is to a change in the true yi. High-leverage points will not have a
lot of influence on the regression line if they lie close to it.

• Finally, influential points are observations whose removal from the data would cause a large change
in the estimated regression line. I.e., they largely disagree with the trend.

A point has to have at least some leverage in order to be influential. To identify influential points,
we can compute each observation’s Cook’s distance di, which measures the effect of omitting that
observation on the parameter vector. Precisely, di has a component that reflects how well the model
fits the i-th observation yi and a component that measures how far that point is from the rest of the
data. Points with di > 1 are generally considered influential.
In the plot, residuals are plotted against their leverage, and dotted red lines represent Cook’s distances
of 0.5 and 1. Points outside these lines have high Cook’s distances, i.e., high influence.9

8These 4 particular types of plots are particularly easy to produce: they are built-in diagnostic plots for linear regression
analysis in R (one need simply run plot() on the fitted model object). The figures used here for illustrative purposes are taken
from https://data.library.virginia.edu/diagnostic-plots/.

9If the lines aren’t visible on the graph, it means that all points are well inside them — there are no influential points.
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Figure 1: Diagnostic plots. From top to bottom: Residuals vs Fitted; Scale-Location;
Normal Q-Q; Residuals vs Leverage.
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4 How to deal with non-spherical errors in OLS

4.1 Sandwich estimators

Assuming (A1)-(A3), by applying the CLT, we obtain the limit distribution of the rescaled β̂OLS:
10

√
n(β̂OLS − β) = ( 1nX

′X)−1 1√
n
X′e = ( 1

n∑
i

xix
′
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pÐÐÐ→

n→∞ MXX

)
−1

1√
n∑

i

xiei

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dÐÐÐ→

n→∞ N (0,MXΣX)

dÐÐÐ→
n→∞

N(0,M−1
XX MXΣXM

−1′
XX )

where ● MXX ∶= plim( 1nX
′X ∣ X) =11 lim(E[ 1

n
X′X∣X]) = lim( 1

n
X′X) is finite and ≠ 0

● MXΣX ∶= plim( 1nX
′ee′X ∣ X) = lim (E[ 1

n
X′ee′X∣X]) = lim ( 1

n
X′ E[ee′∣X]X) ∶= lim( 1

n
X′ΣX)

● Σ is the variance-covariance matrix of the error term: E[ee′∣X]

We talk of the limit distribution of
√
n(β̂OLS − β), instead of β̂OLS, because β̂OLS has a degenerate distribution

with all mass at β. However, it would be more convenient to think of the distribution of β̂OLS rather than
carrying around

√
n(β̂OLS − β). We do this by introducing the artifice of “asymptotic distribution”. We

consider n large but not infinite, s.t. the asymptotics have kicked in, then we can drop the limits in the
expressions (lim is dropped, plim becomes E). We obtain β̂OLS’s asymptotic distribution:

β̂OLS

a∼ N(β, 1
n
( 1
n
X′X)−1( 1

n
X′ΣX)( 1

n
X′X)−1

′
) = N(β, (X′X)-1 X′ΣX (X′X)-1

′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a
V[β̂OLS]

)

We need a consistent estimator of the asymptotic variance-covariance matrix
a

V[β̂OLS] in order
to do sampling-based statistical inference.12 The only unknown is Σ. We hence need a consistent
estimator of this Σ.

Error structure

▸ Spherical (A4)

If assumption (A4) is met, i.e., Σ = σ2I, then the asymptotic variance-covariance matrix simplifies to
a

V = (X′X)-1X′ΣX(X′X)-1
′
= σ2(X′X)-1(X′X)(X′X)-1

′
= σ2(X′X)-1. The population variance σ2 can

be consistently estimated by the unbiased sample variance s2=∑i r
2
i

n−p , and hence
a

V by
â

VS ∶= s2(X′X)
-1
.

This expression is actually the Cramer-Rao lower bound, therefore β̂OLS is BLUE.

▸ Not spherical

If assumption (A4) is violated—due to heteroscedasticity or dependence—we need a covariance matrix
estimator that is consistent under this misspecification of the remaining likelihood. One approach is

10As in the entire document: (i) β̂OLS refers to the vector of both the intercept and the slope coefficients, i.e., p ≥ 2; (ii) for

convenience, we drop the notation ∣X, however all features of β̂OLS’s distribution presented here are actually conditional on X.
11For a sample average Z̄n: by an LLN, plim Z̄n = limE[Z̄n].
12The standard error used in the t-test for β̂OLS is indeed an estimate of

√
a
V[β̂OLS].
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to use sandwich estimators.13 We decompose the variance into its 3 k×k components: bread, meat,
bread, and compute a consistent estimator of the meat component X ′ΣX that best represents our
assumed error structure, to finally compute:

â

V[β̂OLS] ∶= (X′X)
-1

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
bread

X′Σ̂X
²
meat

(X′X)-1
′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bread

• Heteroskedastic

Σ = diag[σ2
i ]. White (1980) proposes to use Σ̂H ∶= 1

n−pdiag[r
2
i ], i.e., X′Σ̂HX = 1

n−p ∑i r
2
i xix

′
i. The

resulting non-parametric estimator
â

VH is consistent for
a

V, even though r2i is inconsistent for σ2
i .

The resulting standard errors are called heteroskedasticity-consistent (HC) aka “robust”. They are
larger than those assuming homoskedasticity (which are downward-biased) as they account for the
extra variation. HC SEs seem to have become best practice with large samples, as one can rarely
assume homoskedastic errors.1415

• Autocorrelated

If errors are autocorrelated in any way (in time, in space, by groups...), it means that the model
is not capturing some feature of the DGP. To conduct proper inference, one can either treat this
structure as substance and incorporate it in the model (e.g., if errors are autocorrelated by group,
by modeling a multilevel data structure), or treat it as nuisance and adjust for it after fitting the
model (e.g., if errors are autocorrelated by group, by clustering standard errors).16

In the second approach, the dependence structure is left in the errors, such that the true covariance
matrix of the errors Σ has some non-diagonal terms that are non-zero. We need an estimator Σ̂ that
is consistent for all diagonal and non-diagonal terms. The sandwich estimators below achieve this
with the same approach:

∗ They assume the process is 2nd order stationary;17

13All extremum estimators can actually be shown to be consistent and asymptotic normal, with an asymptotic variance

matrix in the sandwich form:
√
n(θ̂ − θ) dÐ→ N (0,A(θ)−1B(θ)A(θ)−1). The sandwich algorithm presented here for OLS can be

extended to all extremum estimators, e.g., ML and GMM. This is not to say that it should be; Freedman (2006) points out that
while White’s sandwich estimator often gives good results in OLS, the equivalent correction in ML does not necessarily make
sense: “If the model is nearly correct, so are the usual standard errors, and robustification is unlikely to help much. On the
other hand, if the model is seriously in error, the sandwich may help on the variance side, but the parameters being estimated
by the ML are likely to be meaningless.” (If the specification—and hence the likelihood function—is incorrect, the parameter
will be biased; why care about the variance of an estimator for the wrong parameter?)

14With a nonlinear conditional expectation function (CEF), the use of a linear model to approximate it should lead to
heteroskedasticity (Angrist and Pischke, 2008, p.35). Indeed, as the quality of fit between the regression line and the CEF will
vary with xi, the residuals will be larger, on average, at values of xi where the fit is poorer. The residual variance will increase
with the square of the gap between the regression line xiβ and the CEF E[yi∣xi].

15Ideally, we would calculate an efficient estimator directly, instead of accepting an inefficient OLS and adjusting the SEs.
The appropriate estimator is weighted least squares (WLS). However, its asymptotic efficiency rests on the correct specification
of the pattern of heteroskedasticity. I.e., WLS is the better solution if we know the pattern, but we usually don’t.

16If we make no adjustments for this structure, default standard errors will generally overstate the estimator’s precision.
Note that similarly as the note above, the first-best strategy would be to use generalized least squares (GLS), which produces
an efficient estimator if we know the correct specification of the pattern of autocorrelation; but we usually don’t.

17A stationary process is “a stochastic process whose unconditional joint probability distribution does not change over the
dimension of the process”. I.e., here:
· for a time series: the autocorrelation between 2 obs. that are m periods apart, is the same across the period;
· for a spatial process: the autocorrelation between 2 obs. that are apart by a distance d, is the same across the spatial field;
· for a process across groups: the autocorrelation between 2 obs. is fully determined by their group appartenance.
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∗ They use sample equivalents: White’s estimates for diagonal terms,18 and sample autocovari-
ances for non-zero non-diagonal terms. They also give weights to these non-zero non-diagonal
covariance terms (e.g., through a kernel function).

They are thereby fully non-parametric, and account for dependence of unknown form along the
dimension of autocorrelation.

∗ Clustering (dimension of autocorrelation: group appartenance)

Errors are correlated within groups or “clusters”: E[ei∣xi] = 0, E[eiej ∣xi,xj] ≠ 0, ∀i, j ∈ same
group g. The covariance matrix of the error term Σ has a block-diagonal structure.

The cluster-robust estimator uses X′Σ̂CX = 1
n−p ∑

G
g=1X

′
grgr

′
gXg.

Note: This estimator is valid only if the number of clusters G is sufficiently large (rule of
thumb: > 30), as, like all sandwich estimators, it relies on asymptotics.19 Note that if clusters
are unbalanced, the effective number of clusters is even lower. Cameron and Miller (2015)
recommends using critical values from the tG−1 distribution instead of the normal N (0,1).

∗ Serial correlation (dimension of autocorrelation: time)

Newey and West (1987) proposes an estimator that accounts for serial correlation of unknown
form in an error time series {et}. It can be expanded to panel datasets by estimating only
correlations between lagged errors in the same cluster.

The time series’ autocovariance of lag l is γe(t, t−l) ∶= cov[et, et−l] = E[(et−µet)(et−l−µet)]. If the
process is covariance-stationary, it is a function of the relative lag only: γe(l). Its bias-adjusted
sample equivalent, i.e., the sample autocovariance, is g(l) = 1

T−k ∑
T
t=l+1 rtrt−l.

The Newey-West estimator weights these sample autocovariances using a triangular kernel func-
tion,20 s.t. the weight decreases linearly with the lag up to a chosen maximum lag L, and adds
White’s variance estimates:

Σ̂NW ∶= G(0) +
L

∑
l=1
(1 − l

L+1) [G(l) +G(l)
′]

Ô⇒ X′Σ̂NWX ∶= 1
T−k

T

∑
t=1

r2t xtx
′
t +

L

∑
l=1
(1− l

L+1) [
1

T−k

n

∑
t=l+1

rtrt−lxtx
′
t−l + 1

T−k

n

∑
t=l+1

rtrt−lxt−lx
′
t]

= 1
T−k

T

∑
t=1

r2t xtx
′
t + 1

T−k

L

∑
l=1
(1 − l

L+1)
n

∑
t=l+1

rtrt−l(xtx′t−l + xt−lx′t)

Note: Σ̂ is consistent iff L →∞ and L
T 1/4 → 0 as T →∞, i.e., iff L grows slower than T 1/4. A

common practice is hence to set L to the integer part of T 1/4.

18These estimators are hence also heteroskedasticity-consistent.

19The t-statistic t
β̂
=

β̂ − β
√

V̂C[β̂]

a∼
H0

N (0,1). However, for finite G (and therefore, especially for small G < 30), t
β̂
’s distribution

is unknown — even with normal errors. Intuitively, fewer clusters means there is less independent information in the sample
(as the data are independent across clusters but not within). Using critical values from the standard normal distribution will
downward-bias the variance estimate, leading to too narrow confidence intervals and over-rejection of the null.

20The modified Bartlett weights also ensure that Σ̂ is positive semi-definite, which is required for the formation of asymptotic
confidence intervals and hypothesis testing.

11



∗ Spatial correlation (dimension of autocorrelation: space)

This dimension is actually a dual dimension: while time or group appartenance are 1D, space is
at least 2D. Conley (1999), under the supplementary assumption that the process is isotropic,
proposes a consistent estimator for Σ̂ that accounts for spatial correlation of unknown form in
the errors. It weights the sample covariances using a kernel function k(si, sj), where si is the
location of observation i.

X′Σ̂CoX ∶= 1
n−p

n

∑
i=1

r2i xix
′
i + 1

n−p

n

∑
i=1

n

∑
j=1

k(si, sj) rirjxix′j

Notes:

· Multiple choices of kernel are possible. Conley (2008) presents the uniform kernel but does not
recommend it over another. Σ̂ will be consistent if ∀h, k(s, s+h) → 1 as n → ∞, but slowly
enough for the variance of Σ̂ to collapse to zero. Assuming a stationary and isotropic process,
k(i, j) simplifies to a function of distance: k(dij). One can choose whichever distance metric
fits one’s context, e.g., a metric of economic distance.

· Conley (1999) shows that spatial dependence does not imply that SEs will necessarily increase.
In his empirical example, 6 out of 9 spatial SE estimates are smaller than their iid counterparts.

· Similarly to cluster robust standard errors, these perform well only when there is a reasonable
effective number of independent clusters, which decreases as the radius is extended.

· This estimator is very similar to the method of Kriging in geostatistics.

△! Sandwich estimators are pointless in ML estimation These computations of adjusted SEs make
sense only for the linear regression model estimated by OLS, where the OLS point estimator remains unbiased
(but is not “best” in the sense of having minimum mean square error), and they serve to address that the
OLS variance estimator would not be consistent for the variance of the OLS estimates. In the case of a
model that is nonlinear in the parameters (e.g., a Logit or Probit model, which is usually estimated by ML),
if for example the errors are heteroskedastic, then:

• The ML estimator of
a

V[β̂ML] is inconsistent (as in the linear model);

• But β̂ML itself is also biased (in an unknown direction), and inconsistent (unless the likelihood function
is modified to correctly take into account the precise form of heteroskedasticity).

The reporting of robust standard errors in the context of nonlinear models such as Logit and Probit therefore
doesn’t make sense. What use is a consistent SE when the point estimate is wrong (Freedman, 2006)? This
is why it is important to test for model mis-specification (such as heteroskedasticity) when estimating models
such as Logit, Probit, Tobit...21 Then, if need be, the model can be modified to take the heteroskedasticity
into account before we estimate the parameters; e.g., using fixed or random effects.

4.2 Block bootstrap

• Bootstrapping is a resampling technique which allows estimation of the sampling distribution of almost
any statistic.

• Goal: estimating the sampling distribution of a statistic (ex of statistic: a regression coefficient)

21The reason why one can use a sandwich estimator in a linear model is because the coefficients and standard errors are
determined separately. In nonlinear models estimated by ML, the coefficients and standard errors can’t be separated, they
are jointly determined by maximizing the likelihood of y∣X. The problem applies to most of the standard models (binary,
multinomial, ordered, and count data models) with the exception of GLS and Poisson.
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• Assumption: Bootstrap relies on the assumption that the data represent the actual underlying (popu-
lation) distribution well. It doesn’t make specific distributional assumptions.

• Method: create an approximating distribution: from the existing original sample of size n, take a
random sample (with replacement) also of size n. Do this B times. From each of the B boostrap

resamples, compute the statistic of interest β̂b. We obtain a distribution (β̂1, ..., β̂B).
• Clustered Data
As observations within the same cluster tend to be more alike with each other compared with observa-
tions in other clusters (e.g., students in the same class have a common teacher), observations exhibit
some degree of interdependence. This interdependence is a result of the sampling design typically found
in CRTs where all students in one group or cluster are assigned to a condition which then affects the
variance of the outcome which in turn affects the estimates of the standard errors. While OLS point
estimates should be unbiased, the greater concern when dealing with clustered data revolves around
the standard errors.
Cluster bootstrapping: (Good alternative esp. when the number of clusters is small.) Our data has n
observations across J clusters. Each of the B resamples is obtained by: randomly selecting J clusters
with replacement (so some clusters will be selected more than once and others not selected at all), and
including all observations within these clusters in the overall bootstrapped sample. If clusters have
different sizes, the bootstrapped sample b may not be of size n. The block bootstrap is used when the
data, or the errors in a model, are correlated. In this case, a simple case or residual resampling will
fail, as it is not able to replicate the correlation in the data. The block bootstrap tries to replicate
the correlation by resampling inside blocks of data. The block bootstrap has been used mainly with
data correlated in time (i.e. time series) but can also be used with data correlated in space, or among
groups (cluster data). Cluster data describes data where many observations per unit are observed.
This could be observing many firms in many states or observing students in many classes. In such
cases, the correlation structure is simplified, and one does usually make the assumption that data
is correlated within a group/cluster, but independent between groups/clusters. The structure of the
block bootstrap is easily obtained (where the block just corresponds to the group), and usually only
the groups are resampled, while the observations within the groups are left unchanged.
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A Misc.

A.1 Deriving the formula of the OLS estimator

Consider the multivariate linear regression model. We can write it as a system of n equations, or equivalently,
in its matrix form:

yi = x′iβ + ei =
k

∑
j=0

βjxij + ei, ei
iid∼ (0, σ2), for i = 1, ..., n

y = Xβ + e, e ∼ (0, σ2In)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

⋮
yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x11 x12 ⋯ x1k

1 x21 x22 ⋯ x2k

⋮ ⋮ ⋮ ⋱ ⋮
1 xn1 xn2 ⋯ xnk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1

⋮
βk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

⋮
en

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The OLS estimator is defined as the minimizer of the sum of squared residuals: β̂OLS ∶= argmin
β

SSR ∶=

argmin
β

∑n
i=1 r

2
i = argmin

β
∑n

i=1(yi − x′iβ)2. We can solve for β̂OLS using calculus:

• Matrix form

β̂OLS ∶= argmin
β
(y −Xβ)′(y −Xβ) = argmin

β
(y′y − β′X′y − y′Xβ + β′X′Xβ)

FOC:
dS

dβ
(β̂) = 0 ⇐⇒ d

dβ
(y′y − β′X′y − y′Xβ + β′X′Xβ)∣

β=β̂
= 0

⇐⇒ −X′y − (y′X)′ + 2X′Xβ∣
β=β̂ = 0

22

⇐⇒ −2X′y + 2X′Xβ̂ = 0
⇐⇒ β̂ = (X′X)−1X′y

• System of n equations

β̂OLS ∶= argmin
β

∑
i

r2i = argmin
β

∑
i

(yi −∑
k

βkxik)
2

FOC: ∀j, ∂∑i r
2
i

∂βj
= 0 ⇐⇒ 2∑

i

ri
∂ri
∂βj
= 0

⇐⇒ ∑
i

(yi −∑kβkxik)
∂(yi −∑k βkxik)

∂βj
= 0

⇐⇒ ∑
i

(yi −∑kβkxik) (−xij) = 0

⇐⇒ ∑
i

xijyi =∑
i

xij∑kβkxik

For example:

22Using denominator-layout notation, we have the following derivatives, or scalar-by-vector identities (where β and A are

vectors): dβ′A
dβ
= dA′β

dβ
= A, dβ′Aβ

dβ
= 2Aβ.
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– For the univariate regression model yi = β0 + β1xi + ei (i.e., xi0 = 1 and xi1 = xi):

∗ β̂0: ∑i yi = ∑i(β̂0 + β̂1xi) ⇐⇒ nȳ = nβ̂0 + nβ̂1x̄ ⇐⇒ β̂0 = ȳ − β̂1x̄

∗ β̂1: ∑i xiyi = ∑i xi(β̂0 + β̂1xi) ⇐⇒ ∑i xiyi = β̂0nx̄ + β̂1∑i x
2
i

⇐⇒ 1
n ∑i xiyi = (ȳ − β̂1x̄)x̄ + β̂1

1
n ∑i x

2
i

⇐⇒ 1
n ∑i(xiyi) − ȳx̄ = β̂1 ( 1n ∑i(x2

i ) − x̄2)

⇐⇒ β̂1 =
1
n∑i(xiyi) − ȳx̄

1
n∑i(x2

i ) − x̄2
= ... =

1
n∑i(xi−x̄)(yi−ȳ)

1
n∑i(xi−x̄)2

This is the sample equivalent of the estimand: β1 = cov[x,y]
V[x] .

– For the bivariate regression model yi = β0 + β1xi + β2zi + ei
∗ β̂0: ... ⇐⇒ β̂0 = ȳ − β̂1x̄ − β̂2z̄

∗ β̂1: ... ⇐⇒ β̂1 = the sample analog of cov[x,y]V[z]−cov[x,z]cov[z,y]
V[x]V[z]−cov[x,z]2

∗ β̂2: ... ⇐⇒ β̂2 = the sample analog of cov[z,y]V[x]−cov[x,z]cov[x,y]
V[x]V[z]−cov[x,z]2

– For the multivariate regression model yi = β0 + β1xi1 + ... + βpxip + ei

∗ β̂k: ... ⇐⇒ β̂k = the sample analog of cov[x̃k,y]
V[x̃k] where x̃k is the residual from the regression

of xk on all the other covariates.

A.2 Linear algebra — Positive-definite matrices

An k × k matrix A is invertible if there exists an k × k matrix B such that AB = BA = Ik.
A square matrix that is not invertible is called singular or degenerate.

The quasi-totality of square matrices are invertible.

Let M be an k × k symmetric real matrix, {λk} its eigenvalues.
• M is positive-definite ⇐⇒ z′Mz > 0 for every vector z ∈ Rk ⇐⇒ all {λk} are > 0.
• M is positive semi-definite ⇐⇒ z′Mz ≥ 0 for every vector z ∈ Rk ⇐⇒ all {λk} are ≥ 0.

Ex: The identity matrix Ik is positive-definite.

− Every positive definite matrix is invertible and its inverse is also positive definite.
− In statistics, the covariance matrix of a multivariate probability distribution is always symmetric and

positive semi-definite; and it is positive definite unless one variable is an exact linear function of the
others. Conversely, every positive semi-definite matrix is the covariance matrix of some multivariate
distribution. Here we are talking about population covariance matrices. It is possible that the sample
covariance matrix is singular, e.g., if there is exact collinearity, or when the number of observations is less
than the number of variables.

A.3 Kernel functions for non-parametric statistics
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A kernel is a non-negative real-valued integrable function k(), used as a weighting function in non-
parametric estimation techniques. They are also called “window functions” (notably in time-series).

Some applications require the function to satisfy additional conditions, for instance:

– normalization: ∫
+∞
−∞ k(u)du = 1

In kernel density estimation, this ensures that the estimation produces a probability density function.

– symmetry: ∀u, k(−u) = k(u)
This ensures that the average of the corresponding distribution is equal to that of the sample used.

Examples of commonly used symmetric kernels, with the arbitrary bounded support [−1,1]:

• uniform: k(u) = {
1 if ∣u∣ ≤ 1
0 otherwise

x

1

−1 1

• triangular (Bartlett): k(u) = {
1 − ∣u∣ if ∣u∣ ≤ 1

0 otherwise
x

1

−1 1

• modified Bartlett (a la Newey-West): k(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − u

L + 1 if ∣u∣ ≤ L

0 otherwise

• parabolic (Epanechnikov): k(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3

4
(1 − u2) if ∣u∣ ≤ 1

0 otherwise
x

1

−1 1
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