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Course Description

This workshop designed for the students in the PhD program in Sustainable Development covers the funda-
mental theory and techniques of causal inference. Specifically tailored to students trained in econometrics
and positioned to conduct interdisciplinary research, it ties back the econometrics approaches covered to
the underlying statistical framework, and provides the students with the tools to conduct rigorous empirical
analyses and to share and defend their approach in front of both economics and non-economics audiences.
Lower-year students are presented the fundamental methods for observational studies; upper-year students
can discuss how they employ them in their own current research. Participants are presented with the core
methods in the field, their limitations and best practices, and less-common statistical methods relevant for
causal inference.

Course Overview

The workshop will consist of a weekly class session, led by the teaching assistant. The 13 weeks are organized
into four sections:

A. [The aim of causal inference] Fundamentals of inferential statistics are reviewed, followed by the theoret-
ical framework of potential outcomes for causal inference, and how it’s implemented with observational
data through regression modeling.

B. [Core of how it’s done] The most common identification strategies — special cases of regression adapted
to particular forms of natural experiments — are reviewed. For each method, the canonical setup
is presented in the first part of the session, in particular: the data generating process assumed; the
identifying assumptions; the estimand of interest; the estimator used; best practices; strengths and
weaknesses. The second part of the session then puts the theory in practice by discussing the analyzes
of working or published papers: work in progress by a current PhD student and/or a published paper
on sustainable development.



C. [How to improve upon it] How to obtain stronger causal inferences through steps at the analysis stage.
Pre- and post-estimation best practices are presented, including how to support the assumptions on
which the inferences rest, and the benefits of matching and prediction for causal inference.

D. Less common topics in causal inference are presented, such as randomization inference, the synthetic
control method, and directed acyclic graphs.

The workshop does not follow a specific textbook, but the two references in which the participants will find
most of the material covered — and that are highly recommended as complements of each other — are
Angrist and Pischke (2008) and Gelman et al. (2020).

Grading The course is graded on a Pass/Fail basis. The course grade will be based mostly on attendance,
and also on a home assignment to be turned in on the final week of class. It will consist of the replication
of the analysis of a published paper, to supplement with statistical analyses covered during the course (e.g.,
diagnosis checks of underlying modeling assumptions, model evaluation, matching...).

Course Structure Week-by-week list of class topics:

A. Causal inference fundamentals

1. Overall presentation; Inferential statistics fundamentals
- The interpretation of slope parameter estimates and of their statistical significance relies on modeling
assumptions. Regression models as conditional distributions; assumptions of the classical linear
regression model, and the estimator properties depending on them.
- Dealing with some departures from the usual assumptions: sandwich estimators; limited y models.

2. The potential outcomes framework and identification

- The Neyman-Rubin causal model or potential outcomes framework. Identification from independence
assumptions.

- The regression on the treatment recovers an average treatment effect (relation between observed and
potential outcomes). Simplest case & extensions (limited Y, covariates X, continuous D).

- References Deaton and Cartwright (2018); Rubin (1974)

B. Design stage: Identification strategies

3. Instrumental Variables (IV)
- Theory: instruments and compliance behavior; two-stage least squares; local average treatment effect
(LATE); computing average complier characteristics and getting more out of a LATE.
- Application: a working paper by a current PhD student and/or a published paper related to SDev.
- References Angrist and Pischke (2008, eq. 4.4.8); Abadie (2003); Andrews et al. (2019); Kowalski
(2018)
4. Regression Discontinuity (RD)
- Theory: deterministic but discontinuous assignment; estimation with flexible functional forms; Sharp
RD, Fuzzy RD (imperfect compliance).
- Application: a working paper by a current PhD student and/or a published paper related to SDev.
- References Almond and Doyle (2011)

5. Difference-in-Differences (DiD), ...-in-Differences (DiDiD), event-studies

- Theory: different models of the counterfactual; pre-trends; justifying a third difference; pitfalls of
weighted sums of the average treatment effects with two-way fixed effect estimators.

- Application: a working paper by a current PhD student and/or a published paper related to SDev.

- References de Chaisemartin and D’Haultfeeuille (2020, 2022); Goodman-Bacon (2021)



C. Analysis stage: Steps for stronger causal inferences

6. Limitations of identification strategies; Pre-estimation steps: restructuring the data

- Limitations of identification strategies; steps can be taken pre-/during-/post-estimation.

- Exploratory data analysis: scatterplot your raw data (and show some summary in your final paper).

- Restructuring the data by matching to improve overlap: in place of (Angrist and Pischke, 2008) or
on top of (Gelman et al., 2020; Ho et al., 2007) regression, but never in place of design. Examples of
distance metrics (propensity score, Mahalanobis distance). Algorithm for propensity score matching.

- References Almond et al. (2005)

7. Estimation steps: controls & TE heterogeneity

- Required/forbidden controls; optional good/bad controls; bias amplification.

- Treatment effect heterogeneity: interactions with pretreatment variables; pooling of group-level TEs
and introduction to multilevel modeling.

- References Cinelli et al. (2021); Feller and Gelman (2015); Gelman (2006); Middleton et al. (2016)

8. Post-estimation steps #1: supporting assumptions

- Modeling assumptions; back to inference fundamentals: post-estimation model diagnostics. Fake
data simulations: fit the model to simulated data where you know the true parameter values.

- Identifying assumptions; show a balance test table and do falsification tests. Examples of falsification
tests for each identifying assumption of common identification strategies (IV, RDD, DiD).

- References Ex: Imbens and Wooldridge (2009, eq. 3); Imbens and Lemieux (2008); McCrary (2008)

D. Other topics in causal inference

10. Another approach: the causal graph framework
- Elements of Directed Acyclic Graphs (DAGs). Two main identification strategies: 1. blocking back-
door paths; 2. instruments.
- Strengths and weaknesses of the PO vs. DAG approaches.
- References Morgan and Winship (2015, ch. 1.5 & 3); Imbens (2020); Cunningham (2021, chap. 3)
11. Randomization inference
- Design-based vs sampling-based inference. Motivations: no true sampling variation to speak of; not
having to rely on asymptotics; preserving unformalizable clustered data structures.

- Application: a working paper by a current PhD student and/or a published paper related to SDev.
- References Athey and Imbens (2017); Cooperman (2017)

12. Synthetic Control Method (SCM)

- Creating an optimized counterfactual: the “synthetic unit”.
- Application: a working paper by a current PhD student and/or a published paper related to SDev.
- References Abadie (2021); Abadie et al. (2010, 2015); Arkhangelsky et al. (2021); Ferman et al. (2020)

E. Wrap-up & ‘Replication+’ exercise
13. Wrap-up + Exercise



- Putting all the pieces together; How to present one’s causal analysis.
- “Replication +” exercise: Using data from a published causal inference paper, we redo the analysis,
conduct post-estimation checks and explore other methods.

Accommodations I am committed to teaching a class in which every student can learn and participate.
If you have a disability or a circumstance that affects your learning in this course, please let me know as
soon as possible so that we can discuss together the best way to meet your needs. Do not hesitate also to
contact Disability Services to discuss options to removing barriers in the course, including accommodations.
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